
MICCAI 2019 Workshop Proceedings

Computational Biomechanics for Medicine XIV

Karol Miller, Grand Joldes, Martyn Nash, Poul M.F. Nielsen, Adam Wittek
Poul M.F. Nn

http://cbm.mech.uwa.edu.au/CBM2019



Preface: 

Computational Biomechanics for Medicine Workshop series was established in 2006 
with the first meeting held in Copenhagen. The fourteenth (CBM XIV) workshop was 
held in conjunction with the Medical Image Computing and Computer Assisted 
Intervention Conference (MICCAI 2019) in Shenzhen on 13 October 2019. It provided 
an opportunity for specialists in a wide area of computational sciences to present and 
exchange opinions and ideas on the possibilities of applying their techniques to 
computer- integrated medicine. 

 
Computational Biomechanics for Medicine XIV proceedings are organized into two 
parts: 1) “Computational Solid Mechanics” and 2) “Topics in patient-specific 
computations”. Some of the interesting topics discussed include application of advanced 
computational methods in the following areas: 

• Medical image analysis; 
• Image-guided surgery; 
• Surgical intervention planning; 
• Disease prognosis and diagnosis; 
• Cell biomechanics; 
• Soft tissue biomechanics; 
• Injury mechanism analysis 

 
After rigorous review of full manuscripts we accepted seven papers, collected in this 
volume. 

 
Information about Computational Biomechanics for Medicine Workshops, including 
Proceedings of the previous meetings is available at http://cbm.mech.uwa.edu.au/. 

 

We would like to thank the MICCAI 2019 organizers for help with administering the 
Workshop, invited lecturers for deep insights into their research fields, the authors for 
submitting high quality work, and the reviewers for helping with paper selection. 
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What has image based modelling of 
cerebrospinal fluid flow in Chiari Malformation 
taught us about syringomyelia mechanisms? 

Lynne E Bilston 

Neuroscience Research Australia and Prince of Wales Clinical School, UNSW 

Abstract  

Chiari Malformation is a congenital disorder of the hindbrain, in which the cer-
ebellar tonsils protrude through the foramen magnum, impeding normal cerebro-
spinal fluid (CSF) flow into the spinal canal. It is associated with pain, dizziness 
and headaches, particularly related to coughing and straining. The mechanisms by 
which Chiari malformation gives rise to these symptoms are not understood. In a 
large proportion of patients, a fluid-filled cavity develops in the spinal cord, called 
a syrinx. Syrinxes can cause additional neurological deficits, including sensory 
changes, weakness and upper limb pain. Syrinxes are associated with disturbances 
to normal CSF dynamics, usually as a result of obstructions in the spinal canal, but 
precisely how this occurs is not known. Animal studies suggest that fluid transport 
into the spinal cord is increased in the presence of spinal canal obstructions, likely 
via annular spaces surrounding penetrating arteries (perivascular spaces). Human 
phase contrast magnetic resonance imaging studies can quantify both cardiac driv-
en motion of cerebrospinal fluid flow, and, more recently, respiratory and other in-
fluences. These data can be used to generate subject-specific computational fluid 
dynamics models of the hindbrain and spinal canal to estimate spinal canal pres-
sure dynamics in patients with Chiari malformation, patients with syrinxes, and 
healthy controls. Computational models of perivascular space flow can be linked 
to these macroscopic models, to enable investigation of the feasibility of hypothe-
ses about mechanisms of syrinx formation. To date, these studies have demon-
strated that several popular hypotheses about Chiari mechanisms and syrinx for-
mation are inconsistent with the mechanics of CSF flow, and generated novel 
mechanistic hypotheses. Subject-specific image based modelling provide a useful 
adjunct to human and animal experimental research into CSF flow disorders such 
as Chiari malformation and syringomyelia.   

V 
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Lung Tumor Tracking Based on Patient-Specific
Biomechanical Model of the Respiratory System

Hamid Ladjal, Michael Beuve and Behzad Shariat

1 Introduction

Organ motion due to patient breathing introduces a technical challenge for dosimetry
and lung tumor treatment by radiation therapy. Accurate dose distribution estimation
requires patient-specific information on tumor position, size and shape as well as in-
formation regarding the material density and stopping power of the media along the
beam path. In order to calculate and to ensure sufficient dose coverage throughout the
treatment, the internal margin (IM) and setup margin (SM) are added to the clinical
target volume (CTV) to compensate for the breathing movement and to obtain target
volume (PTV). Generally, the addition of different margins leads to an excessively
large PTV that would go beyond the patient’s tolerance, and does not reflect the ac-
tual clinical consequences [1]. In the case of moving tumors, the PTV is increased so
that the tumor lies inside the treatment field at all times. Breathing is an active and
a complex process where the respiratory motion is non-reproducible, and the breath-
ing periodicity, amplitude and motion path of patients’ organs are observed during the
respiration [2, 3]. Various different types of correspondence models that have been
used and developed in the literature (linear, piece-wise linear, polynomial, B-spline,
neural networks, etc.) in order to correlate the internal motion to respiratory surrogate
signals. For more information on the correspondence models please see the complete
review in chapter III of Ehrhardt Lorenz 2013 [3].
The biomechanical approaches aim at identification and taking into account the dif-
ferent anatomical and physiological aspects of breathing dynamics. These approaches
attempt to describe respiratory-induced organ motion through a mathematical formu-
lation based on continuum media mechanics solved generally on Finite Element Meth-
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ods (FEM) [4, 5, 6]. Unfortunately, most of the time, the authors have used a single
organ (lung) with nonrealistic of boundary conditions, or the lung motion is simulated
by using simple displacement boundary conditions which are not realistic and do not
take into account the real physiological respiratory dynamics. However, in [7] the au-
thors present an ad-hoc evolutionary algorithm designed to explore a search space with
15 dimensions for the respiratory system including different organs. The method tries
to estimate the parameters of a complex organ behavior model (15 parameters). The
authors in [8] have proposed a FE model of the lung motion using a generic pressure-
volume curve, which is not patient specific. Recently, the authors in [9] have proposed
patient specific biomechanical model of the lung motion from 4D CT images for half
respiratory cycle, where the motion is not constrained by any fixed boundary condi-
tion. The authors have used 4 and 16 pressure zones on the sub-diaphragm and thoracic
cavity, respectively. Unfortunately, none of these methods take into account the real
physiological respiratory properties, and are not able (or difficult) to be controlled or
monitored by the external parameters. In this chapter, we evaluate the 3D tumor tra-
jectories from patient-specific biomechanical models of the respiratory system for a
whole respiratory cycle, based on personalized physiological pressure-volume curve
[10]. This model has coupled an automatic tuning algorithm to calculate the personal-
ized lung pressure and diaphragm force parameters .

2 MATERIALS AND METHODS

2.1 Anatomy and physiology of the respiratory system

The lung is a passive organ which is divided into two halves, the right and left lung. It
is situated in the thorax on either side of the heart. The pleural cavity is surrounded by
the the chest wall on the sides, and the diaphragm on the bottom. This space contains
pleural fluid which facilitates near frictionless sliding at this boundary. The diaphragm
is a dome-shaped musculofibrous membrane concave toward the lungs which sepa-
rates the thorax from the abdominal cavity (Fig.1). It is composed of a peripheral part
(muscular fibre) and a central part (tendon). Lungs are linked to the diaphragm and to
the ribs through the pleura. The mechanics of human breathing involves two steps that
alternate with each other: inhalation (inspiration) and exhalation (expiration). Neg-
ative pressure in the pleural cavity (natural breathing) initiates when the diaphragm
and chest wall move away from the lung. The negative pressure expands lung volume,
dropping the internal lung pressure, allowing air to enter passively in the lung. The
ability of the lungs to expand is expressed by using a measure known as the lung com-
pliance. Lung compliance is the relationship between how much pressure is required
to produce a degree of volume change of the lungs. It is affected by the elastic prop-
erties of the lung. The pulmonary compliance therefore reflects the lungs ability to
develop in response to an increase in pressure.
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Fig. 1 Respiratory mechanics: the role of the diaphragm and thorax in breathing.

2.2 3D Segmentation and CAD reconstruction

Biomechanical modeling of the respiratory system necessitates the geometrical mod-
eling of involved organs. For this purpose a correct segmentation of organs on CT
images is necessary. Various approaches for multi-organ and lung segmentation have
been developed based on CT images, which include gray-level thresholding, region
growing, edge tracking. In this paper, the thorax, the lungs and the external skin are
segmented automatically using gray-level thresholds algorithms available within ITK-
SNAP library1. Automatic segmentation of the diaphragm is difficult due the lack of
image contrast of the diaphragm with its surrounding organs as well as the respiration-
induced motion artifacts in 4D CT images. The diaphragms were manually segmented
within ITK-SNAP [11, 12]. In order to extract the mediastinum structure, we have
used the different segmentation masks of the lungs, thorax, the inner thoracic region
and the diaphragm. The accurate segmentation of lung tumors remains quite challeng-
ing, and the correct segmentation can only be achieved by medical experts.
After segmentation, a 3D surface mesh and a CAD-based approach has been devel-
oped. The organs shape are reconstructed as a solid using non-uniform rational B-
spline (NURBS) curves. Using the resulting smooth surface, a quality mesh using a
first-order tetrahedra elements (C3D4) is generated using Abaqus packages (Fig.2).

2.3 Biomechanical patient-specific model of the respiratory system

The organs are considered as isotropic, elastic and hyperelastic materials. For an
isotropic elastic or hyperelastic material, the elastic energy, denoted W , may be written
as:

1 ITK-SNAP is a software application used to segment structures in 3D medical images
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3D segmentation                CAD Patient specific    3D tetrahedral mesh

Fig. 2 3D Segmentation, CAD reconstruction and 3D mesh patient specific adapted for finite element
simulation.

W (E) =
λ
2
(tr E)2 +µ (tr E2) (1)

where E is the Green-Lagrange strain tensor, λ and µ are the Lame coefficients. The
Lame coefficients can be written in terms of Young’s modulus, E, and Poisson’s ratio,
ν .

µ =
E

2(1+ν)
λ = ν

E
(1−2ν)(1+ν)

(2)

The second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor given
by:

S = λ (tr E)I+2 µ E (3)

For dynamic simulation using FEM, the equation of motion of a vertex l of the organ
mesh can be written:

Ml{ül}+ γ l{u̇l}+ ∑
τ∈νl

({
Fint

l
})

=
{

Fl
ext

}
(4)

Where Ml , γ l are respectively the mass and damping coefficients of each vertex. The
νl is the neighborhood of vertex l (i.e. the tetrahedra containing node l). To solve the
dynamic system, we have chosen the implicit finite difference scheme in time for more
stability.
In our simulation, the mass density of each tissue is patient-specific, calculated and

determined directly from CT scan images, based on the density mapping algorithm
defined and developed in our previous works [14]: First, organs tetrahedral meshes
are generated from segmented CT scanner images. Next, the Hounsfield values issued
from CT scanner images are converted into density values that are mapped to the
node of the mesh, respecting the principles of mass conservation(Fig.3). For more
information related to density mapping algorithm, one may refer to [13, 14].
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2.4 The boundary conditions

The developed biomechanical respiratory model is monitored directly by simulated
actions of the breathing muscles; the diaphragm and the intercostal muscles/the rib
cage. For the diaphragm, we have applied the radial direction of muscle forces, which
corresponds anatomically to the direction of muscle fibers. The pressure is applied on
the muscular part of the diaphragm and a simple homogeneous Dirichlet boundary
conditions is applied in the lower part of the diaphragm and the Lagrange multiplier’s
method used for the contact model. In order to simulate the sliding of the lungs, a
surface-to-surface contact model is applied on the lung-chest cavity, as well as lung-
diaphragm cavity. The frictionless contact surfaces are used to simulate the pleural
fluid behavior.
In our previous works [15, 11, 12], we have presented a methodology to study rib
kinematics, using the finite helical axis method, where ribs could be considered as
rigid bodies compared to other surrounding anatomical elements. The idea is to pre-
dict, from the transformation parameters, the rib positions and orientation at any time.
Each rib transformation parameter is automatically computed between the initial and
final states (Fig.4). Then, we have applied a linear interpolation of the transformation
to predict the rib motion at any intermediate breathing states. For more details about
finite helical axis method, one can refer to [15].
In this work, the amplitude of the lung pressure and diaphragm force are patient spe-
cific, they are determined at different respiratory states by an optimization framework
based on inverse finite element method [10]. The model is controlled by personalized
pressure-volume curves (semi-static compliance), calculated by Css =

3(1−2ν)
E Vt−1

at dif-
ferent states. Where E, ν , Vt−1 are Young’s modulus, Poisson’s ratio and lung volume
at step t − 1 respectively. The mechanical properties and behaviors of the different
organs used in our simulations are settled in the Table.1.
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Fig. 4 The boundary conditions (BC) of our patient specific biomechanical model of the respiratory
system.

Table 1 Mechanical properties of breathing system: LE Linear Elastic, HVSK Hyperelastic Saint
Venant Kirchhoff, E Young’s modulus, ν Poisson’s ratio, ρ volumetric density [11, 12, 10]

Tissues Mechanical E ν ρ
behavior (MPa) (kg/m3)

Lungs HSVK 3.74∗ 10−3 0.3 3∗102

Lung tumor LE 49 0.4 1.5∗103

Mediastinum LE 5.87∗ 10−3 0.4 1∗ 102

Diaphragm muscle HSVK 5.32 0.33 1∗03

Diaphragm tendon LE 33 0.33 1∗03

Ribs LE 5000 0.3 1.5∗03

Cartilage LE 49 0.3 1∗03

Body of sternum LE 11500 0.3 1.5∗03

Thoracic vertebra LE 9860 0.3 1.5∗03

Flesh LE 5.32 0.4 1∗06

3 Results and experimental validation

Patients Mean ± SD (mm) Mean Amplitude
T10 T20 T30 T40 T50 All states

Patient 1 2,0 ± 1,5 2,1 ± 1,2 2,1 ± 1,5 1,6 ± 1,3 1,2 ± 0,8 1,7± 1,3 10.9 (mm)
Patient 10 2,1 ± 1,5 2,2 ± 1,2 2,1 ± 1,6 1.6 ± 1,5 1.1 ± 0.8 1.8±1.3 26,06 (mm)

Table 2 Average landmark lung error (mm) during exhalation at different respiratory states: the first
state T00, the end inspiration (T50), the end expiration (T10)
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Fig. 5 Some criteria of mesh quality of tetrahedral elements. The triangular mesh element showing
the longest side, shortest side, maximum interior angle and the minimum interior angle.
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Fig. 6 Lung deformations during the full breathing cycle and intermediate states (10 states). Image
slices of a patient case are taken from the DIR-lab data base [16]. The curve is only for illustration
purposes .

3.1 Mesh quality

The quality of the mesh plays a significant role in the accuracy and stability of the nu-
merical computation. In our simulation, we have used the linear tetrahedral continuum
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Fig. 7 Qualitative analysis of patient specific biomechanical simulation; lungs and diaphragm de-
formations from the end inhalation (EI) to end exhalation (EE), T00, T20, T40 and T50 are the
intermediate states of the respiration between the EI to EE.

elements (C3D4). These elements permit mesh refinement around areas of high stress
concentration. By default, poor quality elements are those that fulfill one or several of
the following criteria: jacobian greater than 0.6, ratio of the maximum side length to
the minimum side length larger than 10, the shape factor ranges from 0 to 1, minimum
interior angle smaller than 20 degrees, and maximum interior angle larger than 120
degrees.
In this chapter, the mesh quality Fig.5 is performed using Abaqus packages. The above
criteria for these elements are: 97,83% of the elements with shape factor ( EV

OEV )2 be-
tween 0.1 and 1, 82,95% elements with minimum angle≥ 20, 99,5% with maximum
angle ≤ 140, 95,9% with minimum length edge ≥ 3mm, 99,1% with maximum length
edge ≤ 15mm. From DIR-Lab Dataset [16], we have evaluated the motion estimation
accuracy on two selected patients, with small and large breathing amplitudes (Patient1
= 10.9 mm, Patient10 = 26.06mm). In our finite element simulation, we simulate the
full breathing cycle, including 10 intermediate states( see Fig.6). We define the sim-
ulation time for the inspiration phase is 2 seconds and for the expiration phase is 3
seconds. The Fig.7 shows the displacement field of the lungs and diaphragm during
breathing. For the diaphragm, we can observe the maximum displacement on the right-
posterior (RP) and left-posterior (LP) sides. It is also possible to notice a slightly larger
(RP) side motion than (LP) side motion, according to the physiological anatomy. For
the lungs deformation, the maximum displacement occurring in the posterior region

2 EV: element volume and OEV: Optimal element volume is the volume of an equilateral tetrahedron
with the same circumradius as the element. (The circumradius is the radius of the sphere passing
through the four vertices of the tetrahedron.)
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Fig. 8 3D lung tumor trajectory (in mm) issued from 4D CT scan images compared to the trajec-
tory calculated by biomechanical finite element model including rib kinematics for patient P10 from
DirLab data set [16].

along the superior-inferior (SI) direction (diaphragm direction).
Preliminary study was conducted to verify the efficiency of the developed finite el-
ement model and to evaluate lung tumor motion during full breathing cycle. In this
order, the 3D lung tumor trajectories identified from 4D CT scan images were used
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as reference and compared with the 3D lung tumor trajectories estimated from finite
element simulation during the whole cycle of breathing (10 phases between the EI
and EE). The accuracy of the proposed tumor tracking method is evaluated by com-
paring and calculating the average Euclidean distance between the 3D mesh surface
of the segmented tumor and predicted FE lung tumor. The Fig.8 shows a comparison
study between the hysteresis trajectories of the lung tumor during the whole cycle of
the breathing compared to the trajectory calculated directly from 4D CT images. The
results illustrate that our patient specific biomechanical model for tumor lung tracking
is accurate and the average mean error is less than 1.8±1.3mm.

4 Discussion and conclusion

In this research work, we have developed a patient specific biomechanical model of
the respiratory system for lung tumor tracking for the whole respiratory cycle. Our
preliminary results are quite realistic compared to the 4D CT scan images. This could
be a potential tool to provide valuable tumor motion information for physician to re-
duce the margins between clinical target volume (CTV) and planning target volume
(PTV). One of the limitations of our work that the multiple organ shape reconstruc-
tion is time consuming and manual operations for each patient. In order to avoid man-
ual contouring and 3D geometry segmentation for different organs, and to reduce the
computational costs without lowering the quality, we plan to develop and use a real-
istic atlas-based 3D shape reconstruction of the respiratory system based on statistical
training or machine learning, to get a fast and automatic patient-specific model. Also,
the use of few patients is another limitation of the presented work. Future work could
investigate more patients from DirLab data set [16] or other data bases. Currently,
we are working on the optimization of our model. The goal is to produce a novel 4D
computational patient specific model using non-invasive surrogates to predict and to
monitor lung tumor motion during the treatment.

Acknowledgements This research is supported by the LABEX PRIMES (ANR-11-LABX-0063),
within the program Investissements dAvenir(ANR-11-IDEX- 0007) operated by the French National
Research Agency (ANR) and by France Hadron.
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Simulation of soft tissue deformation in
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Abstract. Non-linear models used in dynamic simulations usually re-
quire the solution of multiple large and sparse linear systems in a succes-
sive manner. In this paper, we conduct a study of numerical solvers in the
framework of real-time soft tissue deformation. Domain Decomposition
paradigm has the potential of providing parallelism at both levels of equa-
tion assembling and linear system solving. In our case domain decompo-
sition is employed to solve a non-linear model in a dynamic simulation in
order to meet real-time computation by using parallel architecture. Nu-
merical test on liver deformations using a non-linear deformation model
is presented to evaluate the acceleration impact of the domain decompo-
sition paradigm. Performances tests clearly show the efficiency of using
a domain decomposition approach for real-time feedback.

Keywords: soft tissue deformation · non-linear model · linear systems
· domain decomposition

1 Introduction

Image-guided therapy has revolutionized medicine, in its ability to provide care
that is both efficient and effective. However, images acquired during an inter-
vention are either incomplete, under-exploited, or can induce adverse outcomes.
This can be due, for instance, to the lack of dimensionality of X-ray images and
the associated radiation exposure for the patient. In the same time, the scien-
tific computing community developed a particular interest in medical models
which attempt to provide numerical simulation to reproduce living anatomy or
physiology of the specific patient. The main challenge is to combine numerical
models with data extracted from intra-operative images and deliver efficient per-
operative guidance to clinicians.

In this paper, we are mainly interested in the simulation of soft tissue, in the con-
text described above. Whether we consider augmented reality or simply real-time
elastic registration, the constraints are similar. Models that aim to mimic the
mechanical behavior of complex anatomical structures must be accurate enough
to predict the location of internal structures invisible in the intra-operative image
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while providing visual feedback in real-time. This makes the rise of simulation
constraints at several levels: mechanical modeling, equation discretization, and
linear solvers. As a result, any simulation attempt would be necessarily look-
ing for the best compromise between accuracy and computation time. At the
mechanical level, there are several instances in the literature of real-time simu-
lation of deformable object which rely on linear elasticity like in [3]. The first
limitation is inherent to the small strain assumption: to keep a linear model, the
magnitude of deformation must be very small. Non-linear models do not suffer
from this constraint but they introduce an extra computational cost. At the
time discretization level, one of the most known strategies to deal with real-time
computation of the liver tissue deformations is based on an explicit integration
scheme, as proposed in [14, 13]. Explicit integration methods are particularly
well suited for some applications like the real-time non-rigid registration of the
brain shift during surgery [9]. However, liver tissues are often very soft, but in
most of the pathologic cases, these tissues are much stiffer. That makes the criti-
cal time step very small (about 10−6sec) which would not correspond to the real
dynamics. Implicit integration allows the use of larger time steps (about 2 ·10−2

sec) without any stability issues. The counterpart is a heavier computation at
each time step.

In practice, implicit integration schemes require to solve large systems of linear
or non-linear equations. In both cases, we need to use a solver of linear sys-
tems in a successive manner to compute a solution that represents the state of
the simulated model. The computation time of this part is the most important
fold of the overall simulation computation time. The main interest which has
driven our work in this paper is the efficiency in solving a large algebraic linear
system in parallel computation. During these last few years, the computational
power available within the hardware of computers is evolving in a different way.
Due to frequency and heat-dissipation limits, the current trend is focused on
increasing the number of computation units rather than their individual speed.
Nowadays, one or two quadcore processors can be found in standard desktop
computers. Two families of methods are traditionally used to solve a large linear
system arising from discretization of mechanical models on a parallel machine:
direct and iterative solvers. Direct solvers are known to be very robust. However,
the memory requirement becomes significant with larger systems. On the other
hand, iterative solvers [15] e.g., GMRES, CG, are less memory consuming and
naturally parallel but they suffer from a lack of robustness. Domain Decompo-
sition method [19, 4] as well as multigrid [8] method are hybrid methods that
can take advantage of direct solvers and iterative solvers in the same algorithm.
These two groups of approaches are described as hybrid methods because they
are ultimately used as a preconditioner for the linear system during an iterative
method, but direct methods are also used within the definition of the global
preconditioner on some smaller subsystems or auxiliary problems. Such a hy-
bridization provides highly concurrent methods that are robust enough to solve
complex real-life problems [12, 6, 18].
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In this paper, we aim to assess and achieve performance gain in a typical case of
liver deformation simulation using a non-linear model with implicit integration
scheme. To this end, we propose to adopt a domain decomposition paradigm that
introduces parallelism at two different levels, first at the model assembling then
at equation solves. Such a strategy opens new opportunities to deal with accu-
rate real-time simulations of soft organs, in particular in the context of complex
interactions.

2 Method

In this section, we summarize the continuum framework, introduce a constitutive
model along with the boundary value problem, and its numerical discretization.

2.1 Biomechanical model

To describe the mechanical behavior of the liver, we use a total Lagrangian
formalism. In general, we consider a body whose reference configuration is Ω0 at
time t0, subjected to a force per unit mass f , its boundary surface ∂Ω is divided
into a Dirichlet part ΓD0 constrained by a displacement y and a Neumann part
ΓN0 subjected to a traction force T , the continuum equations stated in the strong
form are

ρ0ÿ −∇ ·Σ = ρ0f in Ω0,

Σ · n = T on ΓN0 ,

y = y on ΓD0 .

(1)

In these relations ρ0 is the density, Σ is the second Piola-Kirchhoff stress tensor,
and n is the unit surface normal in the reference configuration.

Space integration In order to discretize problem (1) by a finite element
method, consider a tetrahedral mesh {Th}h>0 of the computational domain Ω0.
The discretized finite element formulation results in a nonlinear system of alge-
braic equations

MŸ + F int(Y ) = F ext, ∀t ∈ [0, T ], (2)

where initial, internal and external forces are respectively given by

MŸ =

∫
Th
ρ0NiNjdV Ÿ ,

F inti =

∫
Th
Σ : ∇NidV,

F exti =

∫
Th
ρ0f ·NidV +

∫
ΓN
0h

T ·NS
i dS,

(3)

where M is the mass matrix, Ni is the conventional shape function corresponding
to node i ∈ [1, N ] with N the number of nodes. Y ∈ RN is the vector of the
current nodal positions.
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Time integration : We chose a conventional implicit integration scheme pro-
vided by Newmark [1]. To this end, we consider a positive integer N and define
∆t = T/N , tn = n∆t, for n = 0, 1, ..., N . We compute the approximation Y n by
using the following second-order Newmark scheme

Y n+1 =Y n +∆tẎ n + (1/4)∆t2Ÿ n,

Ẏ n+1 =Y n − (1/2)∆tŸ n,

MŸ n+1 + F int(Y n+1) = F extn+1.

(4)

In hyperelastic models, the internal forces are provided by a non-linear function
F int. Here, we use the Newton-Raphson method to address the non-linearity at
each time step.

The fully discretized problem (4) gives rise to a linear system of the form Au = b
which needs to be solved for each simulation time step and more than ones in
case of non-linear models. Solving such a linear system could become extremely
expensive from the computational point of view. Medical simulations are con-
strained by the need for real-time computation to enable interactivity of the
simulation, this requirement translates into solving concurrently multiple linear
systems under a very challenging time constraint.

Traditionally, to solve these linear systems, two types of approaches are used:
direct and iterative solvers. Direct solvers provide the solution in a fixed num-
ber of steps. It mainly involves two phases: first, the factorization phase, e.g.,
LU,LDLᵀ, then, the solving phase. The factorization phase is independent of the
right hand side and is computationally more expensive than the solving phase.
Iterative solvers, e.g., GMRES, on the other hand, do not modify the matrix and
rely solely on matrix-vector products and other basic algebra operations. How-
ever, for an iterative solver to be efficient, choosing a good preconditioner [15] is
imperative, but in some cases finding a good preconditioner is a difficult task.

To overcome the disadvantages of iterative solvers and to take advantage of the
desirable features of direct solvers in the framework of parallel computing, there
has been an increasing focus on the so-called hybrid methods such as domain
decomposition and multigrid methods. For this paper, we adopt in the numerical
implementation a parallel strategy based on domain decomposition method.

2.2 Domain decomposition solver

Domain decomposition methods are known to be a divide & conquer paradigm to
accelerate numerical simulations. In our simulation context, we choose to use an
overlapping Schwarz method. To describe it, we first divide the mesh {Th}h>0 in
N non-overlapping meshes (the sub-domains) {Ti}16i6N using standard graph
partitioners, e.g., METIS [11]. If δ is a positive integer, the overlapping decom-
position

{
T δi
}
16i6N

is defined recursively as follows: T δi is obtained by including
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all elements of T δ−1i plus all adjacent elements of T δ−1i . For δ = 0, T δi = Ti. Let{
Vδi
}
16i6N

be the local deformation FE spaces defined on
{
T δi
}
16i6N

.

Now, consider the restrictions {Ri}16i6N from Vh to
{
Vδi
}
16i6N

and a local

partitions of unity {Di}16i6N such that:

N∑
j=1

Rᵀ
jDjRj = Idn×n,

where Id denotes the identity matrix and n is the global number of unknowns
in the deformation space. Algebraically speaking, if n is the global number of
deformation unknowns and {ni}16i6N are the numbers of degrees of freedom in
each local deformation FE space, then Ri is a Boolean matrix of size ni×n, and
Di is a diagonal matrix of size ni × ni, for all 1 6 i 6 N .

Using the partition of unity, one can use the one-level preconditioner, Restricted
Additive Schwarz (RAS) method, proposed by Cai and Sarkis [2]:

M−1RAS =

N∑
i=1

Rᵀ
iDiA

−1
i Ri, (5)

where the {Ai}16i6N are local operators defined by the submatrices {RiARᵀ
i }16i6N .

In this case, we thus chose to use a more sophisticated multilevel domain de-
composition method using the GenEO approach [17, 6]. This preconditioner,
M−1GenEO, uses a spectral coarse grid to better couple all sub-domains.

3 Results

This section aims to assess the efficiency of linear solvers described in the pre-
vious section in the presence of non-linear deformation model. To this end, we
consider Saint-Venant Kirchhoff as a constitutive law to model the liver mechan-
ical response. The Saint-Venant Kirchhoff law is given by the following potential:

W (e) =
λ

2
(Tr(e))2 + µ(Tr(e2)), (6)

where e is the Green Lagrange tensor e = 1
2

(
∇y + (∇y)ᵀ + (∇y)ᵀ · ∇y

)
. Then

the second Piola stress tensor is given by Σ = ∂W
∂e . λ and µ are the Lamé coeffi-

cients that can be determined from the Youngs modulus E and Poissons ratio ν.

The geometry of the model is segmented from a patient pre-operative Com-
puted Tomography (CT) image. The domain is then meshed in a set of linear
tetrahedral elements using GMSH [5]. In all the following simulations, we use
two different mesh discretizations. An initial tetrahedral mesh with 3316 ele-
ments which yields a linear system A with 2000 unknowns. Then, we refine the
same mesh by splitting each element into multiple smaller elements to get a
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finer mesh with 22208 elements, which yields a linear system A with 12321 un-
knowns. For domain decomposition purpose, the mesh is decomposed using the
graph partitioner METIS [11] (figure 1). The resulting finite element linear sys-
tem is preconditioned with M−1GenEO, and the GMRES solver is stopped when
the relative preconditioned residual is lower than 10−6

To implement the physical model, we have employed the open source simulation
software FreeFem [7]. The linear solvers and the preconditioners are implemented
in HPDDM [10]. We used the PARDISO [16] library for direct solver. Results
were obtained on a standard desktop machine equipped with Intel with 6 Intel
cores clocked at 3.2 GHz.

(a) Liver domain decomposition in 4
sub domains.

(b) Liver deformation estimated by a
non linear model.

Fig 1: Left: liver computational domain decomposed in 4 sub-domains using the graph
partitioner METIS [11] - Right: Liver deformation estimated by the non-linear Saint-
Venant Kirchhoff law (the initial configuration is represented by blue points).

3.1 Static non-linear deformation

In this paragraph we evaluate the performances of pure direct solver versus
domain decomposition solver for static deformation using a Newton-Raphson
algorithm. We simulated an entire liver deformation. A volumic force of 100Pa
in the (x + y) direction is uniformly applied to the liver while several selected
vertices of a plane are fixed (representing the ligament and veins). We considered
Young modulus E = 3 · 103 and Poisson ratio ν = 0.35. We do not consider the
liver as a fully incompressible material in this test. The simulated deformation
is shown in Fig. 1b, where the deformed mesh is ploted as well as the intial liver
configuration (represented by blue points).
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N
# d.o.f
per sub. Prec(ms). Solves(ms). Total(ms). # Newton

iterations
# Iterations

per Newton it Speedup # of d.o.f.

1 1998 0.00 47.96 47.96 3 1 -
2.00 · 1032 1263 16.50 11.05 27.55 3 8 1.7

4 897 12.88 7.89 20.77 3 9 2.3
1 12321 0.00 421.97 421.97 4 1 -

12.32 · 1032 7056 142.68 105.86 248.54 4 10 1.7
4 4494 99.00 94.92 193.91 4 13 2.1

Table 1: Breakdown of the time spent in solver steps for 3D non-linear solver with
respect to the number of subdomains, the second column corresponds to the maximum
number of unknowns per subdomain, the third column is the time spent in building the
DDM preconditioner, and the fourth column corresponds to the time spent in solving
the multiple Newton inner linear systems.

In Table 1, we report the time spent in all subroutines included during the mul-
tiples Newton iterations solve with respect to the number of subdomains N . The
case N = 1 corresponds direct solver case, where the system is first factorized
with and LDLᵀ than solved. For N ≥ 2, the system is solved using GMRES
with a domain decomposition preconditioner M−1GenEO. Very few Newton itera-
tions (column number 6) are needed for the solver to converge, independently
of the number of subdomains (first column). The scalability of the solving ap-
proach is reported in the table using the run of the direct solver (a.k.a N = 1) as
a reference. For each mesh, we ensure that we are calculating the same solution
regardless of the linear solver type (direct or domain decomposition solver). To
do that, we make sure that L2 norm of the final deformation is the same during
each scalbility test.

We notice that domain decomposition approach is already providing a reasonable
speedup with respect to the number of subdomains. Moreover, we observe that
using a simple direct solver approach requires to build the factorization again
for each inner Newton iteration with the same high cost. Whereas with domain
decomposition approach the same preconditioner is reused for all the Newton
iterations with no significant impact on the GMRES solver, thanks to the ro-
bustness of the DD preconditioner, the number of Krylov iterations remains
stable. This suggests that we can take more benefits in a scenario of dynamic
deformations, where we need to solve more linear systems successively through
both Newton iterations and time integration algorithm.

The scalability is impacted by the number of unknowns per subdomain, which
is not scaling linearly with the number subdomains. This fact is first due to the
load balancing provided by the graph partitioner and also due to the overlapping
regions between subdomains, which seems to be more critical in case of small
meshes. We also notice that the increase in the number of unknowns from 2000
to 12321 leads to the increase of the computation time. This happens because
the convergence of the iterative solvers is influenced by the condition number
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of the stiffness matrix, and the condition number will increase with a decreased
element size for a given object.

3.2 Dynamic non-linear deformation

The main objective of this paragraph is to show that the cost of the domain
decomposition preconditioner is quickly amortized in the scenario of successive
solutions of linear systems. Typically in case of stiff elastic deformation where the
implicit integration method is more appropriate. To this end, we solve the entire
discretized problem (4), where, a Newmark, implicit time integration scheme is
used with a time step of 0.01s, in this scenario, the same volume force as the one
used in the static case is again uniformly applied to the liver (Fig. 1b) for 0.03s
than released to let the system reaches the equilibrium state. We simulate the
liver deformation for both discretizations with coarse mesh yielding a system of
2000 unknowns and refined mesh yielding a system of 12321 unknowns. In Fig 2,
we show the behavior of computational time spent in solving the successive linear
system. The red and blue curves represent, respectively, the coarse and fine mesh
discretization. The global domain has been decomposed in 4 subdomains allowing
the simulation to run on 4 processors. For each time step, the Newton-Raphson
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Fig 2: Performances of domain decomposition solver during the simulation of a dy-
namic non-linear deformation liver response. Using the Saint-Venant Kirchhoff model.
Red and blue curves represent the computation time per Newton iteration over time
steps with resp to coarse mesh (2000 unknowns) and refined mesh (12321 unknowns).

algorithm is performed to update the deformation state. We use the domain
decomposition approach as a solver, where preconditioner M−1GenEO is built at
the first time step than used for preconditioning all the following Newton inner
linear systems
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3.3 Contact & deformation

While keeping the context of simulating the behavior of soft tissues, we can point
out the importance of providing methods and models to simulate the mechanical
interactions on the organ model: interactions with the surrounding anatomical
structures (i.e. contacts), interactions with different surgical instruments leading
to contacts or other types of complex interactions. Simulating these interactions
necessitate to detect them, to model them, and then to solve them with adapted
numerical methods. In practice the numerical system to solve is an augmented
version of linear systems that we have solved in previous paragraphs. If we
consider the case of a two-body interaction, the augmented system takes the
following form

AU = b+ JTλ (7)

which can be formulated asA1 0 JT1
0 A2 J

T
1

J1 J2 0

y1y2
λ

 =

 b1b2
−δ

 (8)

A1 and A2 correspond to the linear operators of each body J1, J1 model the
interaction, then the unknowns are the y1, y2 are respectively the displacement
of the two bodies and λ is the vector of contact forces. We believe that in such
case if interaction, domain decomposition approach has a tremendous potential
for solving problem (7). And more than accelerating the linear solves, domain
decomposition can be specifically designed to consider the interaction area as a
single sub-domain domain. This possibility would allow a partial updating of the
global operator, and is likely to lead to a substantial gain in simulation time.

4 Conclusion

In this work, we have investigated the computational expense of solving linear
systems resulting from a combination of non-linear model and dynamic inte-
gration. We showed that employing hybrid solver like a domain decomposition
method has a real potential to harness the capability of small parallel machines
since it takes full advantage in making the solving procedure fully parallel. On
the other hand, the robustness of domain decomposition preconditioners makes
it possible to reuse the preconditioner for successive solves. These two strategies
combined open up the possibility to significantly accelerate the computation for
complex simulation and meet the real-time feedback, which is a hard constraint
in surgical training or intra-operative guidance.

The next step will be to integrate the domain decomposition paradigm with fast
hyperelastic FEM models and implicit contact schemes. We will also investigate
further the limited scalability of the current approach when dealing with real-
time applications, which is likely due to load balancing. This can be improved
by a better tuning of the graph partitioner .
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Abstract: Coronary artery stents are the most important implantation devices for 
the practice of the interventional cardiology to treat coronary artery disease (CAD) 
since the mid-1980s. However, the problems of stent thrombosis (ST) and in-stent 
restenosis (ISR) still exist. In addition to the reasons of implanted materials and 
coatings, mechanical and structural factors are also important factors and respon-
sible for the complications, such as inadequate stent expansion, incomplete stent 
apposition and stent fracture in design. This research aims to develop a concurrent 
topology optimization by a parametric level set method associated with numerical 
homogenization method to generate novel architectures for self-expanding (SE) 
stents with mechanical auxetic metamaterials. The topological design is firstly im-
plemented in MATLAB, and then the optimized architecture is further improved 
and optimized in the commercial software ANSYS. The final stenting structure is 
numerically validated to demonstrate the effectiveness of the design method. 

Keywords: Self-expanding stents, Auxetics, level sets, Topology optimization 

1 Introduction  

Coronary artery disease (CAD) also known as ischemic heart disease (IHD) has 
a high mortality even nowadays. Percutaneous coronary intervention (PCI) tech-
nology has been widely accepted as an effective treatment after 40 years develop-
ment [1, 2]. Among that, the implantation of coronary stents can significantly de-
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crease the rates of restenosis and abrupt closure of arteries to increase life expec-
tancy of patients [3, 4]. 

In the early days, bare-metal stents (BMS) were used in conjunction with angi-
oplasty due to successful results in treating abrupt and susceptible vessel closure 
[5, 6]. However, the incidence of stent thrombosis (ST), in-stent restenosis (ISR) 
and other complications [7] resulted in the generation of drug-eluting stents (DES) 
[8]. DES are superior to BMS in that it can reduce the rate of ISR but have a high-
er risk of ST in the late thrombosis [9, 10], due to drug coatings. Even for the new 
generation of biodegradable stents (BDS) and bioresorbable vascular scaffolds 
(BVS), these drawbacks still remain [11, 12]. Compared with the risk of ST in the 
late healing stage, DES show an obvious decrease of ISR in the short-term treat-
ment without brachytherapy or intracoronary radiation. This is the reason why 
DES are more popular recently. Nevertheless, it has been reported that DES result 
in a higher risk of late thrombosis compared with BMS. The much higher cost of 
DES doesn’t lead to a significant increase in life expectancy than other stents [13]. 

According to different expansion mechanisms, stents can also be divided into 
self-expanding (SE) and balloon-expandable (BE) stents. In 1986, stents with self-
expanding properties were firstly introduced into balloon angioplasty for treating 
abrupt closure of arteries [3]. The characteristics of positive supporting and shape 
memory metal materials [15] gave good short-term treatment results. The most 
advantages of SE stents can be summarized as: (1) The gradual expansion manner 
of SE stents leads to a lower incidence of edge dissections. It can avoid immediate 
vessel wall injury compared with BE stents, which makes SE stents more suitable 
for treating small-diameter vessels [16], (2) The good conformability makes it eas-
ily to match different lesion shapes, which is superior to any other stent for treat-
ing vulnerable plaques and bifurcation lesions, as well as preventing inadequate 
stent expansion, and (3) The used superelastic materials exhibit much better me-
chanical properties than materials of BE stents with respect to fracture toughness, 
flexibility, fatigue strength and corrosion resistance. 

However, some unfavorable features [17, 18] of SE stents limit their clinical 
use. First, the SE stents are usually hosed into cumbersome catheters during the 
implantation, which makes the delivery difficult. Second, the complicated place-
ment demands high accuracy due to the phenomenon of foreshortening after de-
ployment. Third, the continual outward supporting of conventional SE stents is not 
adaptive and difficult to accurately control, which may lead to a larger luminal di-
ameter than the original size that will further pose a thrombotic threat. 

Besides biological factors, structural or mechanical aspects also play an im-
portant role in stents, and they can trigger serious complications finally leading to 
ST and ISR, such as inadequate stent expansion, incomplete stent apposition and 
stent fracture in design [14]. These issues can be addressed via new stenting struc-
tures, new artificial materials or new expansion methods. Hence, the alternative 
designs that can avoid or help reduce these complications are still in demands. 

In this paper, we will focus on the development of a novel family of SE stents 
using topological design optimization technology together with a new type of me-



chanical metamaterials-auxetics, with a view to generating new stenting structural 
architectures, to help reduce the occurrence of ST and ISR after implantation. 

Compared to most conventional materials with positive Poisson’s ratios, auxe-
tics are a special kind of mechanical metamaterials artificially designed to exhibit 
negative Poisson’s ratios (NPR) [19, 20]. Auxetic materials will contract in trans-
verse directions when they are compressed uniaxially. Auxetics provides enhanced 
mechanical properties such as indentation resistance, fracture toughness, and shear 
stiffness, which greatly facilitate a range of applications, including energy absorp-
tion, anti-impact, thermal isolation and biomedical applications [21, 22]. 

Topology optimization provides an efficient way to find the best material dis-
tributions under the boundary and loads conditions in the design domain. It has 
been wildly used in the structural and material designs over the past two decades, 
and several popular methods have been developed, such as the solid isotropic ma-
terial with penalization (SIMP) method [23, 24], the evolutionary structural opti-
mization (ESO) method [25], and level set method (LSM) [26-28]. 

The numerical homogenization method [29, 30] has been developed to evaluate 
the effective properties of microstructures. It is usually combined with other to-
pology optimization methods for the design of microstructures and the related cel-
lular composites. This kind of cellular composites mostly consists of periodic mi-
crostructures and the microstructures can be given special properties such as 
auxetics. The topological design of multifunctional cellular composites enables 
many applications in engineering [31]. 

LSM is one of the recently developed method for topological shape optimiza-
tion of structures. It has shown excellent ability to capture geometry and shape of 
the design. The key concept is to embed the design boundary of a structure as the 
zero-level set of a higher-dimensional level set function. Since the evolution of the 
level set function can be described by the Hamilton-Jacobi Partial Differential 
Equation (PDE) [32], the dynamic motion of the level set function can be tracked 
by solving this equation. However, some strict conditions are required during the 
numerical implementation of the H-J PDE, such as the Courant-Friedrichs-Lewy 
(CFL) condition, boundary velocity extensions, and re-initializations [32]. As one 
of the alternative LSMs, the parametric level set method (PLSM) [33-35] has 
shown it is high efficiency in solving topology optimization [36] and this paper 
will apply the PLSM to design the stenting structural architectures. 

To realize the design of ASE stents, a concurrent topological design method 
will be applied to find auxetic stenting architecture as microstructures, and at the 
same time the compliance of the macro stenting structure is considered to maintain 
the stiffness requirement of stents. Topology optimization will be applied to ex-
plore the best material layout for the SE stents, and the auxetics will be included 
into the biocompatible materials to enable an adaptive “self-expanding” procedure 
of stenting structures. The structure periodically consists of identical auxetic unit 
cells. This will deliver a new kind of auxetic SE (ASE) stents to address the above 
problems relevant to ST and ISR due to the mechanical and structural issues of the 
current stenting designs. The topological optimization can help find the most effi-
cient stenting structures, and auxetics will make SE stents much smaller when 



compressed, beneficial to deliverability. The optimized ASE stents can also elimi-
nate the foreshortening to help the deployment. Moreover, the auxetic behavior 
can also enhance the flexibility, conformability, and fatigue strength of SE stents. 

2 Parametric level-set method 

The unique characteristic of the level set method is the implicit description of 
the structural boundary which is presented at the zero level set of a higher dimen-
sional level set function Φ(x), as shown in Eq. (2.1) As a 2D example illustrated in 
Fig.2.1, Φ(x)=0 shows the boundary of a structure located at zero level set.  

 
Fig. 2.1 Level set function (left) and design domain located at zero level set (right). 
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where x is the point in the space D, Ω and ∂Ω denote the design domain and the 
boundary, respectively. The dynamic motion of the design domain Ω can be 
achieved by solving Hamilton-Jacobi PDE, as shown in (2.2). In that process, the 
normal velocity filed Vn of the boundary ∂Ω is used to enable the dynamic motion 
of the level set function. 

 ( , ) ( , ) 0n
x t V x t
t

Φ Φ∂
− ∇ =

∂
 (2.2) 

The interpolation of the level set function Φ(x) by using CSRBFs φ(x) based on 
the fixed knots in the design domain can be described as Eq. (2.3).  
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where N is the total number of fixed knots in the design domain, αi(t) is the expan-
sion coefficient of the interpolation with respect of the ith knot, and the CSRBFs 
of the ith knot used with C2 continuity is given by: 
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where dI denotes the distance between the current sample knot (x, y) and the ith 
knot (xi, yi), and dmI denotes the radius of the support domain of the ith knot. 

Then, the conventional Hamilton–Jacobi PDE is transformed as Eq. (2.5), and 
the new velocity field Vn can be described as (2.6). Therefore, the dynamic mo-
tion of level set function Φ(x) is only related to the design variables expansion 
coefficient vector α(t). Because α(t) is being evaluated by all knots in the design 
domain, no addition extension scheme is required. In this way, the standard LSM 
is converted into a parametric form. 
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3 Numerical homogenization method 

The numerical homogenization method has been widely used to approximate 
the effective properties of microstructures. The effective elasticity tensor DH 

ijkl of a 
2D microstructure can be calculated by: 

( )( ) ( )( )0( ) *( ) ( ) 0( ) ( ) ( )1 ( )
MI

H ij ij MI ij kl kl MI ij MI MI
ijkl pq pq pqrs rs rsMI

D u D u H d
Ω

ε ε ε ε Φ Ω
Ω

∗= − −∫ (3.1) 

where the superscript ‘MI’ indicates the quantities in the microscale; ΩMI is the de-
sign domain of the microstructure; |ΩMI| is the area of the microstructure; and ФMI 
is the level set function in the microscale. i, j, k ,l=1, 2. Dpqrs is the elasticity tensor 
of the base material. H(ФMI) is the Heaviside function[27]. ε0(ij) 

pq  is the test unit 
strain field, where (1,0,0)T, (0,1,0)T and (0,0,1)T are used in 2D models; ε*(ij) 

pq  is the 
locally varying strain fields and defined by: 
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By using the virtual displacement field νMI(kl) inU(ΩMI) that is the space con-
sisting of all the kinematically admissible displacements in ΩMI, the displacement 
field uMI(ij) can be calculated through finite element analysis using the periodical 
boundary conditions of the microstructure: 
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4 The 1st optimization stage for the design of auxetics 

4.1 The concurrent optimization scheme  

The concurrent topology optimization scheme is defined as a multi-objective 
optimization problem to find an expansion coefficient vector αn

MI for microstruc-
ture to obtain negative Poisson’s ratios, and minimum the compliance of the 
macrostructure. A piece of the stent approximated as rectangle shape is used as the 
micro design domain consisted of one unique microstructure, shown in Fig.4.1; 
two coordinates are used to describe the design domains: the macrostructure(X1, 
X2) and microstructure(Y1, Y2); the vertical degree of freedom is fixed at the top 
and bottom edges of the macro structure, while two unit forces F are applied on 
the left and right edges in the horizontal direction. 2D four-node rectangle ele-
ments is adopted and each element has a unit length, height. The artificial base 
material model with Young’s modulus 1 and Poisson’s ratio 0.3 used. The numer-
ical design scheme can be described as Eq. (4.1). 

 
Fig.4.1 The macrostructure(left) and microstructure(right). 
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where, the superscript ‘MA’  and ‘MI’  denotes the macro and micro quantities, re-
spectively. The expansion coefficients of the CSRBF interpolation αMI 

n  is the de-
sign variable in the microscale, which are within αMI 

min and αMI 
max. N is the total number 

of fixed knots in the micro design domain. J is the total objective function, which 
is comprised of the macro objective function JMA the compliance of the macro-
structure, and micro objective function JMI the Poisson’s ratios of the microstruc-
ture. DH 

11, DH 
12, DH 

22 are specific values of the effective elasticity tensor of the micro-
structure. Here, the optimized microstructure is defined as isotropic or orthotropic 
material, thus there are two Poisson’s ratios defined the in micro objective func-
tion. G is the volume constraint and the upper limitation is defined as Vmax. u and v 
are the real and virtual displacement fields. 

The bilinear energy and the linear load forms of the finite element model in the 
macroscale can be described as: 
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where p is the body force and τ is the traction of the boundary ΓMA. The bilinear 
energy and the linear load forms of finite element model in the microscale can be 
described as: 
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4.2 The sensitivity analysis 

Based on the concurrent topology optimization model presented in section 4.1, 
the sensitivity analysis of the design variables is required. It is divided into two 
parts due to the two different scales and calculated based on the first-order deriva-
tives of the objective functions with respect to the expansion coefficients αMI 

n . The 
sensitivity in the macro-scale is: 
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Since the elastic system is self-adjoint[37], the shape derivative of the elasticity 
tensor DH 

ijkl  can be calculated by: 

 1 ( ) ( ) ( ) ( )
MI

H
ijkl MI MI T MI T MI MI

nMI

D
u x V d

t Ω
β ϕ Φ δ Φ Ω

Ω

∂
= − ∇

∂ ∫  (4.7) 

where δ(ФMI) is the derivative of the Heaviside function H(ФMI), and β(uMI) is: 
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Substituting the normal velocity VMI 
n  defined in Eq. (2.6) into Eq. (4.8): 
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While, the first-order derivative of the effective elasticity tensor DH 
ijkl with respect 

to t can be directly obtained by the chain rule: 
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Comparing (4.9) and (4.10), the derivative of the effective elasticity tensor DH 
ijkl 

with respect to the design variables αMI 
n  can be calculated as: 
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Then the derivative of the macro objective function JMA with respect to the de-
sign variables αMI 

n  can be obtained by Substituting Eq. (4.11) into (4.6). Similarly, 
the derivative of the micro objective function JMI with respect to the design varia-
bles can be calculated, as shown in (4.12), and the derivative of the volume con-
strains G with respect to the design variables are given by (4.13). 
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4.3 Numerical results 

One of the main purposes of ISR is to implanting materials into the vessels, so 
the design of a stent usually uses as less material as possible to decrease the con-
tacts between the stent and vessel walls. Meanwhile, the volume fraction of 35% 
is used for the microstructure design to ensure structural stiffness. To evaluate the 
numerical result, two values of Poisson’s ratios Mu1 and Mu2 in two directions 
are defined as Eq. (4.15).  

 12 11 12 22,H H H HMu1 D D Mu2 D D= =  (4.15) 

Different discretized size of micro design domain will lead to different results, 
that is because more elements used in the design domain may capture more details 
of the optimized structure. Therefore, three different size of discretization 60×60, 
100×100, 40×40 are used, and the relevant results are list in the table 4.1. All 
three results are of clear and smooth boundaries of the microstructures, and exhibit 
NPR properties in both two directions. The material of the stent should be uni-
formly distributed. In the result of 100×100, the bridges in the middle, top and 
bottom are too thin compared with other parts, so this is not a very good choice.  

Mu1 and Mu2 are used to illustrate the Poisson’s ratios in two directions, where 
Mu1 can be used to evaluate the deformation along the horizontal direction when 
deformed in the vertical direction, and Mu2 is used to describe the opposite situa-
tion. Although both negative values of Mu1 and Mu2 are desired to obtain a 
smaller volume of stent when compressed, a smaller absolute value of Mu1 can 
lead to a smaller deformation in the axis direction when stent supporting the ves-
sel, which will prevent the shortening of the stent in axis direction. Hence, the re-
sult of 40×40 is better than 60×60. From that, we can see more elements may cap-



ture more details of the structure, but it may also lead to a complex or ununiform 
distribution of material which may not suitable for the stent design. 

Table 4.1 Three numerical optimization results for auxetic microstructures.  

Size Microstructure Level set surface Effective elasticity tensor Poisson’s ratio 

40×40 

 

 

0.1473 0.0352 0
0.0352 0.0342 0

0 0 0.0043

− 
 − 
  

 0.2390
2 1.0292

Mu1
Mu

= −
= −

 

60×60 

 

 

0.0578 0.0362 0
0.0362 0.0395 0

0 0 0.0023

− 
 − 
  

 0.6263
2 0.9165

Mu1
Mu

= −
= −

 

100×100 

 

 

0.0509 0.0438 0
0.0438 0.0518 0

0 0 0.0021

− 
 − 
  

 0.8605
2 0.8456

Mu1
Mu

= −
= −

 

 
The optimized structure of 40×40 element scale is adopted in the first numeri-

cal optimization stage, as shown in Fig.4.2. From the figure, we can see the mi-
croscale is much smaller than the macroscale. However, as mentioned before, if 
much smaller microstructures are used, the one piece of the stent will be fully 
filled with the material as the left figure shown in Fig. 4.2. By doing this, the flex-
ibility and conformability of the stent will decrease, and the incidence of ISR will 
significantly increase. Therefore, the optimized microstructure will be regarded as 
a smaller periodical macro unit cell in the macroscale. 

 
Fig.4.2 The macro structure (left), 9×9 microstructures (middle), and the unit cell of mi-

crostructure (right) 



5 The 2nd optimization stage and the numerical validation 

Since the mechanical behavior of a stent is more similar to a shell that the di-
mension of the thickness is much smaller than the dimensions of the length and 
width. 2D four-node rectangle element is used in the first step due to the computa-
tional efficiency, while the shell element needs to be adopted in the second stage 
of the optimization to amend the accuracy of the final design. Thus, the commer-
cial software ANSYS v19.2 is utilized to preform topology optimization for a 
stent again with shell elements, based on the optimized result from the first stage. 
The geometry is built by 12 unit cells along the circumference and 16 unit cells 
along the axis, and 10 times bigger than the real stent as shown in Fig.5.1. 

 
Fig.5.1 The stent structure built by the first design result 

The volume fraction of the microstructure is specified as 35% in the first stage, 
and not too much material needs to be removed in the current stage. Hence, 10% 
volume fraction is used to maximum the global compliance of the stent in the sec-
ond stage. The optimized result can be seen in Fig.5.2, and we can see small holes 
are generated in all the joints of the unit cells. 

 
Fig.5.2 The result of the second topology optimization 

The numerical validation is performed to test the auxetic property of the opti-
mized stent in ANSYS. In the simulation, the degree of freedom in the X direction 
of the left edge and one point in the left end is fixed and a force applied on the 
right edge of the stent to compress or stretch it. The test under pression is shown 
in Fig. 5.3. The colourful structure shows deformed stent, while the grey colour 
shows undeformed stent. From the figure we can see the stent contract in the radi-
al directions when they are compressed uniaxially. In the right-side view, the di-
ameter become smaller compared with the original size of the stent.  



 

 
Fig.5.3 The pression test: the front view(left) and the right view(right) 

Then, a stretching test is also performed, the result as shown in Fig. 5.4. The 
stent expanded in the radial directions when they are stretched uniaxially. There-
fore, both compression and stretching test performed for the optimized stent illus-
trate a significant auxetic property. 

 



 
Fig.5.4 The stretching test: the front view(left) and the right view(right) 

6 Conclusion 

The properties of auxetic structures can well satisfy the mechanic requirements 
of SE coronary artery stents and enhance their abilities of dealing with the me-
chanical factors of ST and ISR. The stent design using parametric level set topolo-
gy optimization method provides a concurrent design of both material microstruc-
tures and macro meta-structure, which benefits the stent designs for applications in 
practice. However, another important characteristic of the materials of SE stents is 
the property of shape memory, and it will influence the deformation mechanism 
during the expanding. Therefore, the shape memory behaviour may need to be in-
tegrated into the auxetic design of SE stent in the near future. 
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Abstract. In the context of ultrasound (US) guided breast biopsy, im-
age fusion techniques can be employed to track the position of US-
invisible lesions previously identified on a pre-operative image. Such
methods have to account for the large anatomical deformations result-
ing from probe pressure during US scanning within the real-time con-
straint. Although biomechanical models based on the finite element (FE)
method represent the preferred approach to model breast behavior, they
cannot achieve real-time performances. In this paper we propose to use
deep neural networks to learn large deformations occurring in ultrasound-
guided breast biopsy and then to provide accurate prediction of lesion
displacement in real-time. We train a U-Net architecture on a relatively
small amount of synthetic data generated in an offline phase from FE
simulations of probe-induced deformations on the breast anatomy of in-
terest. Overall, both training data generation and network training are
performed in less than 5 hours, which is clinically acceptable considering
that the biopsy can be performed at most the day after the pre-operative
scan. The method is tested both on synthetic and on real data acquired
on a realistic breast phantom. Results show that our method correctly
learns the deformable behavior modelled via FE simulations and is able
to generalize to real data, achieving a target registration error compara-
ble to that of FE models, while being about a hundred times faster.

Keywords: Ultrasound-guided Breast Biopsy · Deep Neural Networks
· Real-time Simulation.

1 Introduction

Breast biopsy is the preferred technique to evaluate the malignancy of screening-
detected suspicious lesions. To direct the needle towards the target, biopsy pro-
cedures are performed under image guidance, normally done with ultrasound
(US) probes due to their ability to provide real-time visualization of both the
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needle and the internal structures [18]. However, proper needle placement with
US remains a challenging task. First, malignant lesions cannot always be ade-
quately visualized due to the poor image contrast of US. Furthermore, navigation
towards complex 3D lesion geometries is commonly achieved using 2D freehand
US (FUS) systems, which provide information in a lower-dimensional space [11].
Since highly sensitive pre-operative images (such as MRI or CT) can provide
accurate positions of the lesions, finding a method to update these positions
from real-time US images during an intervention would highly benefit current
biopsy procedures. Several commercial and research platforms have implemented
image fusion techniques that align pre-operative and intra-operative data, ex-
ploiting rigid or affine registration methods [6]. However, when dealing with
breast anatomy, large deformations arise due to compression forces applied by
the US probe. To provide accurate probe-tissue coupling and acceptable image
quality, an appropriate alignment procedure of the pre-operative and US data is
required.

Accurate modelling of soft tissue deformation in real-time is a far-from-being-
solved problem. Biomechanical models relying on the finite element method
(FEM) realistically calculate soft tissue deformations by using a mathematical
model based on continuum mechanics theory. Although these models have been
successfully employed for multimodal breast image registration, they have never
been applied to registration between pre-operative data and intra-operative US,
due to difficulties in providing a prediction within real-time constraints [8]. This
is especially true when considering large, non-linear deformations which involve
hyperelastic objects, as it is the case for the breast.

In order to meet real-time compliance, various techniques have been proposed
to simplify the computational complexity of FEM. Some of them have focused on
optimizing linear solvers (the main bottleneck of FEM) or the formulation itself,
such as corotational [5] and multiplicative jacobian energy decomposition [13].
Very efficient implementations also exist, like Total Lagrangian explicit dynam-
ics (TLED) [15], which can achieve real-time performances when coupled with
explicit time integration and GPU-based solvers [10]. Another possible option
to lower the simulation time is through dimensionality reduction techniques,
like Proper Orthogonal Decomposition (POD), where the solution to a high-
dimensional problem is encoded as a subset of precomputed modes. The most
optimized approach used to model breast biomechanics is the one proposed by
Han et al. in [7], which relies on GPU-based TLED formulation. Despite the
significant simulation speedup achieved, solving the FE system took around 30s,
which is still not compatible with real-time. Modelling methods that do not rely
on continuum mechanics laws have also been used to approximate soft tissues
behavior. Among these, the position-based dynamics (PBD) approach has been
used to predict breast lesions displacement due to US probe pressure in real-
time, providing comparable accuracy with FE models [21]. However, not being
based on real mechanical properties, such model requires an initial optimization
of simulation parameters to obtain a realistic description of the deformation.
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An emerging approach which has the potential of being both accurate and
fast, exploits neural networks to estimate soft tissue behavior. Machine learning-
based methods have proven successful to predict the entire 3D organ deformation
starting either by applied surface forces [17, 22] or by acquired surface displace-
ments [19, 1]. Being networks trained with synthetic data generated from FE
simulations, they can reproduce a realistic physics-based description of the or-
gan mechanical behavior. Using FE simulations for model training in the context
of MRI-US deformable image registration has already been proposed in [9], where
the authors build a statistical model of prostate motion which can account for
different properties and boundary conditions. In the case of the breast, the po-
tentiality of employing machine learning techniques has been already shown in
[14], where several tree-based methods have been employed to estimate breast de-
formation due to compression between biopsy plates. These methods have been
trained on 10 different patient geometries with a very specific FE simulation,
where the upper plate is displaced vertically towards the lower one.

Similarly to works in [19, 1], we propose an approach where a neural network
is trained to predict the deformation of internal breast tissues starting from the
acquired surface displacements induced by the US probe. Our network can be
seen as a patient-specific model. We train it on a single patient geometry before
surgery, with a relatively small amount of training data. However, in contrast to
the work of [14], FE simulations that compose the training set are generated with
several random input displacements, making our approach able to generalize to
different probe positions and compression extents.

The proposed method consists in a U-Net architecture, described in Sect. 2.2,
and an immersed boundary method used for generating patient-specific simula-
tions, described in Sect. 2.3. Results presented in Sect. 3 show the efficiency of
the method when applied to both synthetic and ex vivo scenarios. Our contribu-
tion consists of a novel method to generate a real-time capable soft tissue model
to improve target visualization during needle-based procedures. The position
of lesions identified beforehand on pre-operative images can be updated from
intra-operative ultrasound data and visualized by the surgeon in real-time.

2 Methods

This work presents a data-driven method to estimate in real-time the displace-
ment of the breast internal structures due to probe pressure during US scan-
ning. In our pipeline, we assume to have a patient-specific geometric model
of the breast, obtained from pre-operative imaging such as MRI, and to know
the position and orientation of the US probe at each time, thanks to a spatial
tracking system. If the tracking coordinate system and the coordinate system
of pre-operative imaging are registered, knowledge about the 3D pose and the
geometry of the US probe directly allows to identify the contact surface between
the breast and the probe. Since the US probe is represented as a rigid body,
we can reasonably assume that when the anatomy is deformed by the probe
during the image acquisition process, points on the breast surface below the US
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probe will be displaced to the same exact extent as the probe itself. As a con-
sequence, our method can predict the displacements of all the points within the
anatomy given as input the displacement of the surface nodes in contact with
the US probe. The decision of relying on surface displacement inferred from the
spatial tracking of the US probe instead of directly tracking surface deforma-
tions (through, for example, an RGBD camera) was taken from the fact that
probe-induced deformations are large but local, and the probe itself would oc-
clude most of the deformed surface to the sensor, thus preventing an accurate
estimation of the contact surface displacements.

2.1 The U-Net architecture

The objective of our work is to find the relation function f between the partial
surface deformation under the US probe and the deformation inside the breast.
Let us be the surface deformation and uv the volumetric displacement field. In
order to find f a minimization is performed on the expected error over a training
set {(us

n,uv
n)}Nn=1 of N samples:

min
θ

1

N

N∑
n=1

‖f(us
n)− uv

n‖22 (1)

where θ is the set of parameters of the network f . We propose to use the same
architecture as in [1], that is a U-Net [20] adapted to our application (see Fig. 1).
The network consists of an encoding path that reduces the high dimensional
input into a reduced space, and a decoding path that expands it back to the
original shape. The skip connections transfer features along matching levels from
the encoding path to the decoding path through crop and copy operations. As

Fig. 1. U-Net architecture for a padded input grid of size 32 × 24 × 16.

Fig. 1 shows, the encoding path consists of k sequences (k = 3 in our case)
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of two padded 3 × 3 × 3 convolutions and a 2 × 2 × 2 max pooling operation.
At each step, each feature map doubles the number of channels and halves the
spatial dimensions. In the lower part of the U-Net there are two extra 3× 3× 3
convolutional layers leading to a 1024-dimensional array. In a symmetric manner,
the decoding path consists of k sequences of an up-sampling 2×2×2 transposed
convolution followed by two padded 3× 3× 3 convolutions. At each step of the
decoding path, each feature map halves the number of channels and doubles the
spatial dimensions. There is a final 1×1×1 convolutional layer to transform the
last feature map to the desired number of channels of the output (3 channels in
our case). The design of the U-Net is based on a grid-like structure due to this
up- and down-sampling process. Hence we directly mesh our deformable object
with regular hexahedral elements as explained in the next section.

2.2 Simulation of breast tissue using hexahedral grids

The training data set consists of pairs of (us,uv) where us is the input partial
surface displacement and uv is the volumetric displacement field. Even though
the data generation process takes place in an offline phase, in order to generate
enough training data with FE simulations within clinically acceptable times (the
intervention can be performed on the day after pre-operative scan is acquired),
it is important to have simulations that are both accurate and computationally
efficient.

Fig. 2. Breast surface mesh obtained from a pre-operative CT scan immersed in a
hexahedral grid for FEM computations.

We consider the boundary value problem of computing the deformation on
a domain Ω under both Dirichlet and Neumann boundary conditions. Let Γ be
the boundary of Ω (in our case, Γ corresponds to breast external surface, while
Ω represents the entire breast volume). We assume that Dirichlet boundary con-
ditions are applied to ΓD and are a-priori known, whereas Neumann boundary
conditions are applied to ΓN , a subset of Γ that represents probe-tissue contact
area and changes depending on current US probe position. In this work, train-
ing data for the network are generated by solving the discretized version of the
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following boundary value problem, exploiting the FE method:−∇ · σ = 0 in Ω
u = 0 on ΓD
σn = t on ΓN

(2)

where σ is the Cauchy stress tensor, n is the unit normal to ΓN and t is a
traction force applied to the boundary. Note that in (2) we neglect all time-
dependent terms and we do not apply any body force like gravity, since our
geometric model already accounts for the effect of gravity force. The relation
between stress and strain is described through the Saint Venant-Kirchhoff model,
which is the simplest and most efficient extension of a linear elastic material to
the nonlinear regime. This choice is motivated by the fact that a simple linear
elastic model would not be able to appropriately describe the large deformations
undergone by the breast. An iterative Newton-Raphson method is used to solve
the non-linear system of equations approximating the unknown displacement.

We choose to discretize the domain into 8-node hexahedral elements not only
for their good convergence properties and lock-free behavior, but also because it
is the required structure for the input to the network. To do that, the 3D breast
geometry is embedded in a regular grid of hexahedral elements (see Fig. 2) and
we use an immersed-boundary method to correctly approximate the volume of
the object in the FE method computations.

2.3 Data generation

The input to the network corresponds to the displacement us of the points be-
longing to the breast-probe contact area. The punctual displacements are spread
to the nodes of the surrounding cuboid cell through a barycentric mapping and
the corresponding volume displacement uv is obtained by the previously ex-
plained FE approach in response to us. The data used to train the network
must be representative of the application scenario and must allow the network
to extract the pertinent features of the tissue behavior. In order to train our
model to estimate breast volume deformation in response to pressure imposed
with the US probe, we simulate several random probe-induced deformations us-
ing the following strategy:

– Select a random node p in the breast surface
– Select an oriented bounding box A centered in point p and normal to the

breast surface, whose dimensions match those of the US probe lower surface,
which represents current probe-tissue contact area

– Select all the surface points P falling within the box A
– Select as force direction d the normal to the surface at point p plus a random

angle α (α ∈
[
−π4 ,

π
4

]
)

– Apply the same force f of random magnitude (|f | ∈ [0.0, 0.8]) along direction
d to the P selected points simultaneously

– Store the displacement at the set of points P (input to the network) and the
displacement of all the points in the volume (output to the network)
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– Repeat the procedure until N +M samples are generated

The choice of applying force f allowing some angle deviation from normal direc-
tion enables us to include in our dataset samples where the probe compression is
not precisely normal to the surface, as it can be the case in freehand US acquisi-
tions. The maximal force magnitude (e.g. 0.8N) is set such that the amount of
maximal deformation reproduced in the training dataset never exceeds too much
that observed in real clinical settings. The described strategy is used to generate
the set {(us

n,uv
n)}Nn=1 of N samples which is used to train the network, and

the set {(us
n,uv

n)}Mn=1 of M samples which is left for validation. The training
dataset is generated with the SOFA framework [3] on a laptop equipped with an
Intel i7-8750H processor and 16GB RAM.

3 Experiments and Results

The network presented in this work is used to predict US probe-induced defor-
mations of a realistic multi-modality breast phantom (Model 073; CIRS, Norfolk,
VA, USA). The 3D geometry model of the phantom surface and 10 inner lesions
(diameter of 5-10mm) is obtained by segmenting the corresponding CT image,
relying on ITK-SNAP and MeshLab frameworks [24, 2]. A Freehand Ultrasound
System (FUS) based on a Telemed MicrUs US device (Telemed, Vilnius, Lithua-
nia) equipped with a linear probe (model L12-5N40) is used to acquire US im-
ages of the 10 segmented lesions. The dimension of the probe surface is (5x1cm).
For each lesion, we acquire US images in correspondence of four different input
deformations. The MicronTracker Hx40 (ClaronNav, Toronto, Canada) optical
tracking system is used to track US probe in space (Fig. 3(a)). The overall
probe spatial calibration error is below 1mm (±0.7147), estimated through the
PLUS toolkit [12]. Landmark-based rigid registration is performed to refer the
CT-extracted 3D model, the US probe and the US images to the same com-
mon coordinate system, exploiting 3D Slicer functionalities [4]. The registration
process does not only enable us to extract the breast-probe contact area, as de-
scribed in Section 2, but also to know in real-time the 3D position of any point
belonging to the US image. In this way, it is possible to refer lesions position
extracted from US images to the 3D space.

3.1 Predict displacement on synthetic data sets

Elastic properties of the physics model used to generate training data are set
in accordance with the values estimated in [23] for the same breast phantom
considered in this study. However, as we are imposing surface displacements,
the values of the elasticity parameters do not affect the displacement field inside
the simulated volume as long as the ratio of the different stiffness values is
maintained [16], thus making the method reliable for any patient specificity.
Dirichlet boundary conditions are imposed by constraining the motion of all the
nodes belonging to the lowest phantom surface.
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(a) (b)

Fig. 3. (a)Experimental setup. From left to right: monitor showing real-time US im-
ages; CIRS breast phantom during FUS acquisition; optical tracking system that allows
to map the real positions of the CIRS breast phantom and the US probe to the pre-
operative geometry model. (b)External surface and inner lesions of the CIRS breast
phantom.

Using the method described in Sect. 2.2 and 2.3, we discretized the breast
phantom into 2174 hexahedral elements and we simulated several probe-induced
displacements. Overall we generated N = 800 samples for training and M = 200
samples for testing. The U-Net is trained in a GeForce GTX 1080 Ti using a
batch size of 4, 100000 iterations and the Adam optimizer. We used a Pytorch
implementation of the U-Net. To assess the learning capability of the network,
we perform a statistical analysis of the mean norm error e over the testing data
set. Let uv

m be the ground truth displacement tensor for sample m generated
using the finite element method described in Sect. 2.2 and f(us

m) the U-Net
prediction. The mean norm error between uv

m and f(us
m) for sample m reads

as:

e(uv
m, f(us

m)) =
1

n

n∑
i=1

|uv
m
i − f(us

m)i|. (3)

where n is the number of degrees of freedom of the mesh. We compute the
average e, standard deviation σ(e) and maximal value of such norm over the
testing data set. The obtained results are shown in Table 1. The maximal error
is of only 0.266mm and corresponds to the sample shown in Fig. 4(b). The most
striking result is the small computation time required to make the predictions:
only 3.14±0.56ms. In contrast, the FE method takes on average 407.7±64ms to
produce the solution. Obviously, the resolution of the FE mesh could be reduced
to accelerate the computations but at the cost of an accuracy loss.

3.2 Predict displacement on phantom data

In our experiments, we consider one lesion at a time and we reposition the US
probe on the surface of the breast such that the lesion considered is visible on the
US image. In order to validate our model, we manually extract lesions position
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e σ(e) max
m∈M

e Prediction Total training

(mm) (mm) (mm) time (ms) time (min)

0.052 0.050 0.266 3.14 ± 0.56 278

Table 1. Error measures over the testing data set for a breast having 2174 H8 elements,
with maximal nodal deformation of 79.09mm.

(a) (b) (c)

Fig. 4. (a) Sample with maximal deformation (79.09mm). (b) Sample with maximal
mean norm error (0.266mm). The green mesh is the U-Net prediction and the red
mesh is the FEM solution. The initial rest shape is shown in grey. (c) U-Net prediction
on phantom data.

from US image acquired at rest (i.e., without applying any deformation, when the
probe is only slightly touching the surface) and we consider it as a landmark to
track. We then impose four deformations of increasing extent for each lesion, and
we compare the U-Net-predicted displacement with real displacements extracted
from US images. The comparison is performed computing target registration
error (TRE) between the predicted position of the lesion and its ground-truth
position. The performance of our method is compared to that of the FE model
used for data generation. In Table 2 are shown the target registration errors
for each phantom lesion with respect to the applied deformation. The input
deformations are classified into five ranges based on the probe displacements.
Displacement ranges indicated as D15, D20 and D25 have a fixed length of 5
mm each and are centered at 15, 20 and 25 mm respectively. D10 and D30
contain the extreme cases under 12.5 mm or above 27.5 mm.

Values in Table 2 highlight that the average TRE for all the tumors and
for all the deformations is smaller than 6.194mm which is comparable to the
maximum value obtained with the FE method (6.080mm). The average error
increases with the deformation range just like in the FE method. There is no
significant difference between the values of the two tables, meaning that in terms
of accuracy, our method is comparable to the data generation method used to
train it. In order to compute each deformation, the FE method needs about
407.7ms whereas the U-Net predicts the deformation in only 3ms.
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Table 2. Target registration errors in millimeters for different tumors and different
deformation ranges in the breast phantom. The first table is for the proposed method,
while the second table reports results obtained with the FE model used for data gen-
eration. Not-acquired data is reported as (-).

U-Net predictions

TumorID D10 D15 D20 D25 D30 Mean STD

1 - 1.936 2.002 1.506 3.053 2.124 0.569
2 3.211 2.905 4.068 - 4.137 3.580 0.534
3 2.032 - 4.709 7.134 10.90 6.194 3.262
4 0.505 2.225 5.313 5.903 - 3.486 2.217
5 0.932 2.768 3.454 - 4.893 3.012 1.425
6 3.923 6.349 5.625 - 6.724 5.655 1.075
7 3.454 3.864 4.543 6.710 - 4.643 1.255
8 2.422 3.261 4.320 5.136 - 3.785 1.030
9 - 3.928 4.214 4.578 4.858 4.394 0.353
10 5.529 3.272 3.940 4.846 - 4.397 0.860

Mean 2.751 3.390 4.219 5.116 5.761
STD 1.638 1.294 1.007 1.854 2.788

FE method

TumorID D10 D15 D20 D25 D30 Mean STD

1 - 1.326 2.151 2.075 3.759 2.328 0.887
2 1.956 2.738 3.945 - 4.025 3.166 0.865
3 1.595 - 4.748 7.044 10.932 6.080 3.404
4 0.755 1.991 4.544 5.120 - 3.103 1.795
5 1.029 2.863 3.330 - 4.541 2.941 1.262
6 2.579 3.409 2.871 - 2.337 2.799 0.400
7 2.605 3.219 4.095 6.750 - 4.167 1.582
8 2.695 2.748 4.321 5.411 - 3.794 1.139
9 - 2.745 2.497 2.510 4.193 2.986 0.704
10 2.916 2.542 3.015 3.868 - 3.085 0.485

Mean 2.016 2.620 3.552 4.682 4.964
STD 0.765 0.593 0.856 1.803 2.757

4 Conclusion

In this work we have proposed to use a deep neural network to learn the de-
formable behavior of the breast from numerical simulations based on the finite
element method, in order to bypass the high computational cost of the FEM.
Our approach represents an interface between precise biomechanical FE mod-
eling (not capable of real time) and clinical applications requiring both high
accuracy and very high speed. We have shown that our framework allows for ex-
tremely fast predictions of US probe-induced displacements of the breast during
US scanning, achieving comparable accuracy to other existing methods. There-
fore, it has the potential to be employed to update in real-time the estimated
position of breast lesions identified on a pre-operative scan on US images, en-



abling continuous visualization of the biopsy target, even when sonography fails
to render it.

Although the FE model used to train our network does not perform in real-
time, its prediction delay of less than 1 s might be considered already acceptable
for our specific application. However, such good computational performance is
achieved since in this preliminary evaluation we use a very simplistic model, that
does not account for heterogeneity or complex boundary conditions happening in
clinical cases. Usage of a more complex FE model will certainly cause an increase
of computation load. On the contrary, an important feature of our approach is
that the prediction time remains close to 3ms regardless of the grid resolution
and of the biomechanical model used for the data generation process. This means
that increasing the complexity of the model used to generate the data set will not
affect the prediction speed. Moreover, our pipeline allows the method to be in-
sensitive to patient specific elastic properties as it imposes surface displacements.
It is worth noting that for inhomogeneous objects, the displacement field still
depends on the ratio of the different stiffnesses [16]. Another advantage of our
method is the easy meshing process. Any geometry can be embedded in a sparse
grid and through the use of immersed boundary simulations the deformations
are correctly estimated.

The main limitation of our method remains the training process, which is
burdersome and has to be repeated for every new geometry or application. How-
ever, we have shown that a limited amount of training data can be sufficient to
train a U-Net such that it obtains accurate prediction within clinically accept-
able times. As a future work, we plan to use a more general training strategy
leading to a network model able to predict deformations induced by any type
and number of compression tools (for example, different probe shapes or the two
biopsy compression plates).
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Patient-Specific Biomechanics of Abdominal 

Aortic Aneurysms. 
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Abstract   An abdominal aortic aneurysm (AAA) is a permanent and irreversible 

dilation of the lower aortic region. The current clinical rupture risk indicator for 

AAA repair is an anterior-posterior AAA diameter exceeding 5.5 cm. This is an 

inadequate rupture risk indicator given that 60 % of AAAs with larger diameters 

than 5.5 cm often remain stable for the patient’s lifetime while 20 % of smaller 

AAAs have ruptured. A more robust predictor of rupture risk is therefore crucial to 

save lives and reduce medical costs worldwide. Rupture is a local failure of the wall 

that occurs when local mechanical stress exceeds local wall strength.  A comparison 

of the AAA tension and stretch during the cardiac cycle will provide the indication 

of wall structural integrity necessary for reliable rupture risk stratification. Employ-

ing engineering logic, mismatches between tension and stretch are likely to indicate 

localized wall weakening and the likelihood of rupture (e.g. a high stretch resulting 

from a low tension). Biomechanics based Prediction of Aneurysm Rupture Risk 

(BioPARR) is an AAA analysis software application that currently only determines 

aneurysm wall tension. This study seeks to investigate the feasibility of determining 

surface stretches within the AAA wall using methods compatible with clinical prac-

tices. It additionally aims to create and validate a new procedure for AAA rupture 

risk stratification. 

Keywords abdominal aortic aneurysm, rupture, computed tomography angi-

ography, time-resolved, four-dimensional, synthetic, tension, stretch 

1. Introduction 

An abdominal aortic aneurysm (AAA) is a permanent and irreversible dilation of 

the lower aortic region. The condition is usually symptomless and is typically de-

tected during an unrelated procedure. If left untreated, the aneurysm can dissect or 

rupture with the high mortality rates of approximately 80-90 % [1]. Considering the 

dangers and expenses related to the surgical treatment, rupture risk classification is 
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essential. If this rupture risk outweighs the risk of surgery, the patient will be con-

sidered for endovascular (EVAR) or open repair surgery. 

 

The current clinical rupture risk indicator for repair is an anterior-posterior AAA 

diameter exceeding 5.5 cm or a diameter growth rate greater than 1cm/year [2].  

This is an inadequate rupture risk indicator given 60 % of AAAs with larger diam-

eters than 5.5 cm often remain stable for the patient’s lifetime [3] while 20 % of 

smaller AAAs have ruptured [4]. Additionally, AAA rupture has been linked to 

other risk factors, including: genetic history, smoking, high mean arterial pressure 

(MAP), gender, vessel asymmetry, growth of intraluminal thrombus (ILT) and in-

creased metabolic activity [5, 6]. Simplistic conclusions based on diameter alone 

are thus inadequate. A more robust and reliable predictor of rupture risk is therefore 

crucial to save lives and reduce medical costs worldwide. 

 

Many researchers believe that a patient specific biomechanics-based approach is a 

promising alternative that could significantly improve the clinical management of 

AAA patients. With recent advancements in medical imaging and analysis software, 

geometrically accurate patient specific AAA three-dimensional (3D) models can 

now be constructed for the purpose of computer simulations that calculate wall 

stress. Studies have demonstrated that peak wall stress is a better indicator of indi-

vidual rupture risk compared to aortic diameter [7]. Stress alone, however, will not 

provide an accurate estimation of rupture risk as mechanical failure of the wall is 

dependent on both local wall stress and local wall strength. Vande Geest et al de-

rived a statistical model for the non-invasive estimation of wall strength [8]. This 

strength model, however, is population-based, not patient specific and moreover not 

localized. 

 

Many studies have utilized displacement tracking algorithms on time-resolved (4D) 

ultrasound scans to investigate local AAA wall deformations [9]. High local strains 

alone, however, cannot provide an indication of wall strength, as they may be gen-

erated by high local wall tensions. 

 

AAA rupture is a local failure of the wall that occurs when local mechanical stress 

exceeds local wall strength [10].  This study proposes that a comparison of AAA 

tension with stretch during the cardiac cycle will provide the indication of wall 

structural integrity necessary for reliable rupture risk stratification. It is hypothe-

sized that mismatches between local tension and resulting tangential stretch, such 

as high stretch with low tension, indicate localised wall weakening and the likeli-

hood of rupture. 

 

Biomechanics based Prediction of Aneurysm Rupture Risk (BioPARR) is an exist-

ing, free and semi-automatic AAA analysis software application that currently only 

determines aneurysm wall tension [11]. This study seeks to investigate the feasibil-

ity of determining surface stretches within the AAA wall using methods compatible 
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with clinical practice. It additionally aims to validate the approach of pairing surface 

stretches with tension as a measure of AAA rupture potential. 

 

A variety of approaches have been utilized by researchers to obtain ground truth 

data for validation purposes. Most methods are inaccurate and inefficient due to the 

errors introduced by reference tracking algorithms, sparse location of reference 

markers and the bias introduced by these markers on the tracking problem. Addi-

tionally, fabrication of physical phantoms to simulate realistic physiological defor-

mation is both challenging and expensive. 

 

Synthetic data provides a valuable reference for assessing the accuracy of tracking 

algorithms due to knowledge of the exact deformation. In this case, the reference 

displacement field is unbiased by any motion estimation algorithm. Additionally, 

exact deformation is known at each voxel. Furthermore, a wide range of digital data 

can easily be created by researchers thus eliminating the requirement for complex 

experimental phantoms. The usefulness of synthetic data as a validation tool, how-

ever, is highly dependent on the degree of realism of the generated synthetic scans. 

 

One method of creating synthetic datasets involves the use of algorithms that simu-

late the physics of the imaging process. Models of virtual patient anatomy can con-

sequently be ‘imaged’ using these projection algorithms. Models of the patient anat-

omy are only simplified geometries that have been mathematically derived and are 

therefore largely unrealistic. Furthermore, the organs and substructures are mod-

elled as homogenous with constant pixel intensity. Image artefacts introduced by 

the heterogenous tissues are not simulated [12]. Therefore, although these phantoms 

can be used for dosimetry studies, they are inadequate for reliably assessing tech-

niques dependent on image quality.  

 

In the pursuit of increasingly realistic synthetic data, new techniques use biome-

chanical models extracted from the segmentation of real patient anatomy. A single 

static real medical scan is then warped with the deformation field of this model [13]. 

The use of real scans enables more accurate synthetic data creation by accounting 

for the heterogeneous tissue voxel intensities. Exact and simple methods to achieve 

this have not been clearly outlined in the literature. Additionally, these methods 

have mainly been restricted to the modelling of cardiac motion using only echocar-

diography and MRI [13]. This study therefore additionally aims to extend the exist-

ing literature by developing and clearly outlining simple methods for the simulation 

of realistic CT images using open source software for the given application of AAA. 
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2. Methods 

2.1. Synthetic Data 

A simple method of creating a synthetic 4D CT dataset was developed. This was 

achieved by warping a static CT scan using the transformation matrices obtained 

after modelling the pulsatile motion of the abdominal aortic aneurysm geometry.  

 

One abdominal aortic aneurysm computed tomography angiography DICOM scan 

was provided by Dr Hozan Mufty of UZ Leuven academic hospital, Belgium. A 3D 

model of the AAA was created by segmenting the CT scan in 3D Slicer 4.10.1, a 

free open source medical image analysis and visualization software package. 

 

The outer wall of the abdominal aortic aneurysm model was imported into Abaqus 

Explicit 2018. This was taken as the geometry that had been pre-loaded with the 

diastolic pressure. A linear tetrahedral element mesh was used due to its compati-

bility with Abaqus Explicit. The mesh contained approximately 4×106 nodes. The 

simulation consisted of a periodic loading cycle using an internal pulsatile pressure 

of 10 kPa. This represents a high pulse pressure that would realistically be observed 

in AAA patients. The upper and lower ends of the aneurysm were constrained in all 

directions using fixed boundary conditions (Figure 1). Non-linear, hyper-elastic ma-

terial properties were used to model the aneurysm tissue using the strain energy 

function presented by Raghavan and Vorp [14]. This strain energy function (W) 

shown below, was obtained by the researchers after examining the mechanical prop-

erties of excised AAA tissue. 

  
𝑊 = 𝑎(𝐼1𝑐 − 3) + 𝑏(𝐼1𝑐 − 3)2   (1) 

a and b are the material properties and I1c is the first invariant of the right Cauchy-

Green tensor. Most of the aneurysm tissue was modelled using a=113.4 kPa, 

b=9.2 kPa and a density of 1000 kg/m3 [15]. A randomly chosen local region of 

the aneurysm model was purposely weakened by halving each of these material 

parameters. In addition to location, the extent and range of weakening was arbi-

trarily selected. The local weakened and healthier tissue regions are indicated in 

Figure 1 in red and green respectively. 
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Mesh nodal coordinates from five phases of the pulsating biomechanical model, 

between the two extremes of ‘diastole’ and ‘systole’, were extracted and exported 

from Abaqus to 3D Slicer. The transformation matrices, mapping each of the nodal 

coordinates from phase 0 to each of the respective phases, were obtained using the 

‘Scattered Transform’ module [16]. The module interpolates displacements at nodes 

using a BSpline Algorithm. Once the transformation matrices were obtained, the 4D 

synthetic dataset was created using the ‘Data’ module. The initial CT scan was 

warped by each of these transformation matrices after dragging and dropping it onto 

the relevant transform. The new CT frames were then saved by hardening the trans-

forms onto the volume. This resulted in a stack of synthetic CTs corresponding to 

each phase of the pulsating biomechanical model. 

2.2. Voxel Displacement Tracking 

As an alternative to producing an in-house code for the implementation of the dis-

placement tracking techniques, open-source tools are available, such as those used 

for the registration of medical scans. Registration is the task of mapping one image 

to another image. This is typically used by clinicians to align scans of different mo-

dalities, or even align scans taken at different points in time such as for follow up 

procedures. Registration can therefore also be used to determine displacements of 

the aneurysm wall from scans at different points in time during the cardiac cycle. 

 

Thirion proposed the Demons algorithm for non-rigid registration [17]. The Dif-

feomorphic Demons algorithm minimizes the sum of square differences of inten-

sity, contains a smoothness constraint and additionally limits the transformation to 

be one-to-one. The Demons algorithm embodies a computationally efficient simpli-

fication of the optical flow problem. 

Figure 1. Left: The local weakened (red) and healthier (green) tissue re-

gions of the model. Right: Fixed Boundary Conditions applied to the ends 

of the AAA model. 
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The Demons Diffeomorphic Registration was implemented in 3D Slicer using the 

‘BRAINSDemonWarp’ module. A course-to-fine pyramidal approach was utilized 

using 5 pyramid levels. A shrink factor of 16 and iteration count of 300, 50, 30, 20 

and 15 for each respective pyramid level was employed. Linear interpolation and a 

Diffeomorphic Registration Filter were used. These parameter settings produced the 

most accurate results when visually compared with ground truth. 

 

Each synthetic CT frame was registered to the initial frame. The outputs of these 

registrations were transformation matrices mapping points from one image to the 

next. The transformation matrices were then converted to displacement fields in the 

‘Transforms’ module. Using the ‘Probe Volume’ module, the displacement field 

was then overlayed onto the surface of the segmented aneurysm geometry. 

2.3. Determining Maximum Principal Stretch 

The point coordinates of the AAA surface and the displacements at these nodes 

were read into MATLAB. An in-house modified moving least squares (MMLS) 

code was utilized in order to determine the deformation gradient from these nodal 

displacements [18].The deformation gradient (F) was obtained by determining the 

derivative of the displacement vectors with respect to the undeformed configuration 

(X) and adding the identity matrix (I): 

𝐹 = 𝐼 +
𝜕𝑢

𝜕𝑋
        (2) 

Additional code was added in order to determine the principal stretches. We com-

puted the right Cauchy Green strain tensor: C=FTF. Eigenvalues of the right Cauchy 

Green strain tensor are the square of the principal stretches. The maximum principal 

tangential stretches and its directions were obtained after aligning the minimum 

eigenvectors with the surface normals. This is compatible with reality whereby the 

aorta wall will compress radially but stretch tangentially when it is inflated by the 

blood pressure.  

2.4. Determining Maximum Principal Tension 

The Maximum Principal Tension was determined via BioPARR utilizing the fol-

lowing inputs: a constant wall thickness of 1 mm, 16 kPa pressure applied to the 

interior AAA surface representing the patient’s mean arterial blood pressure and a 
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ten-node tetrahedral hybrid element (C3D10H) mesh. The ‘no ILTP’ case was mod-

elled. This case ignores the intraluminal thrombus and loads the interior surface of 

the AAA with blood pressure. This was done for simplicity and because the ILT 

was neglected when modelling the AAA motion. 

2.5. New Rupture Risk Index 

The MATLAB code was additionally updated to read-in the maximum principal 

tensions obtained from BioPARR. A structural integrity index (SII) was created by 

dividing the maximum principal tension by the largest maximum principal stretch 

during the cardiac cycle. A relative structural integrity index map (RSII) was cre-

ated by dividing the SII map by the maximum structural integrity index over the 

AAA volume. This enables clear visualization of weakened areas by comparing all 

the structural integrity indices over the AAA volume with the strongest tissue pre-

sent. 

2.6. Validation of Techniques 

The technique was validated by correlating displacements and maximum principal 

stretches obtained from 4D CT registration with the ground truth values obtained 

from Abaqus. This was implemented for each phase of the cardiac cycle. A Pearson 

correlation test was conducted in Excel with significance evaluated using a p-value 

of 0.05. Similarity to ground truth was also observed by visualizing displacements 

and maximum principal stretches in Paraview, an open-source data analysis and 

visualization application. 

 

This new rupture risk predictor was then validated by determining if the randomly 

located purposely weakened area of the model was detected. This was achieved by 

visualizing relative structural integrity indices below 0.15 using Paraview. This rep-

resents the weakest 15 % of tissue within the AAA. 
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3. Results 

3.1. Validation of Displacement tracking 

A high similarity was observed between the ground truth displacement fields ob-

tained via Abaqus and that obtained from registration of the synthetic 4D CT scans. 

This is depicted in Figure 2 which displays the tangential displacement fields of the 

abdominal aortic aneurysm model during one phase of the cardiac cycle. This is 

additionally indicated by the high Pearson’s correlation coefficients of displacement 

magnitudes (R=0.986, 0.990, 0.993, 0.996, 0.998, p<0.001) and directions for each 

of the respective phases analysed (Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 1. Correlation coefficients for each phase of the cardiac cycle 

 

Figure 2. Tangential displacements of the abdominal aortic aneurysm 

model during one phase of the cardiac cycle. 
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3.2. Maximum Principal Stretches 

A high similarity was also observed between maximum principal stretches obtained 

from registered synthetic 4D CT scans and ground truth stretches obtained via 

Abaqus. This is evident in Figure 3, where for each of the phases analyzed, stretch 

magnitudes and patterns obtained via registration are comparable to ground truth.  

 

3.3.  Relative Structural Integrity Index (RSII) 

The largest maximum principal stretch during the cardiac cycle was then paired with 

the maximum principal tension obtained from BioPARR to compute the relative 

structural integrity index (RSII). A correlation analysis between the ground truth 

and registered RSII distributions indicated that good agreement was obtained 

(R=0.98, Pearson’s correlation, p<0.001). As evident in Figure 4, an illustration of 

the lowest 15 % of RSII successfully identifies the purposely locally weakened tis-

sue depicted in Figure 1. 

 

 

 

 

 

 

 

Figure 3. Maximum Principal Tangential Stretch of the abdominal aortic aneurysm model dur-

ing each phase, obtained via Abaqus (bottom) and registration of 4D synthetic CT scans (top). 
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4. Discussion 

This study has successfully developed a procedure to accurately determine surface 

stretches within the AAA wall using methods compatible with clinical practices.  

 

Most researchers have focused on utilizing time-resolved ultrasound to determine 

deformation of AAAs. This study has highlighted the feasibility of using 4D CT as 

an alternative. This is compatible with clinical workflow due to the current practice 

of employing 3D CT angiography for preoperative imaging of the AAA. Unlike 

ultrasound, 4D CT additionally enables quick, repeatable acquisition of the full vol-

ume of the AAA. 

 

The use of the Demons Diffeomorphic registration technique to track deformation 

during the cardiac cycle from 4D CT scans was validated. The obtained displace-

ments and resulting stretches were highly accurate with strong correlation to ground 

truth.  

 

This novel study has introduced a new and improved rupture risk metric. The RSII 

utilizes a holistic engineering approach by accounting for both local stretches and 

tensions to enable the characterization of tissue integrity local to the AAA. This 

enables a patient specific measure of wall strength that other procedures have not 

considered. Even if stresses are computed correctly, high stresses alone cannot be 

interpreted as a loss of wall structural integrity without knowledge of local wall 

strength. i.e. clearly high wall stress is not an issue if it is present in a strong wall. 

Similarly, methods utilizing only high stretch as a measure of tissue integrity are 

flawed. These local high stretches may be generated by local high tensions and may 

Registration Ground Truth 

Figure 4. Lowest 15 % of relative structural integrity indices (RSII) 

of the aneurysm model 
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not be due to weakened tissue. The RSII was validated by illustrating that a ran-

domly located, purposely weakened area of the model was detected with high accu-

racy. These findings have advanced the state of the art of AAA management. 

 

 

This method of creating a synthetic 4D CT sequence has granted access to the re-

quired data to test the feasibility of determining surface stretches within the AAA 

wall, without reliance on a clinic. It additionally enabled accurate knowledge of 

ground truth values and thus the ability to reliably assess the novel techniques used. 

This essential validation step would not have been possible with real patient data 

where access to exact ground truth is unattainable. Synthetic data provides a refer-

ence displacement field that is unbiased to any motion estimation algorithm. This is 

unlike that required by intermodal registration reference methods and techniques 

relying on the tracking of implanted markers. Unlike previous methods that utilise 

sparsely located reference markers, the technique used in this study provides 

knowledge of exact deformation at each voxel. Furthermore, the simple, low cost 

computer-based biomechanical model is more realistic compared to other mock-ups 

such as complicated physical phantoms, due to easier control of material properties 

and pressures. This opens the door to the generation of a wide range of synthetic 

data, from normal to varying diseased states, as demonstrated by this AAA study. 

The usefulness of synthetic data as a validation tool, however, is highly dependent 

on the degree of realism of the generated sequence. Unlike synthetic datasets cre-

ated using projection algorithms, this study uses methods that produce realistic syn-

thetic data. This was achieved by using real scans to extract exact patient anatomy 

and to simulate the heterogenous voxel intensities of imaged tissue. 

The simple and easily accessible methods developed in this study can similarly be 

used by other researchers to progress pilot studies without being impeded by clinical 

bureaucracy. Additionally, the flexibility offered by this simple technique provides 

a platform to optimize and validate emerging technologies and methods without 

being impeded by the multitude of external restrictions imposed by the other vali-

dation techniques discussed.  

 

Limitations, however, do exist in the presented work. This method of synthetic CT 

creation does not completely take the physics of image acquisition into account. 

Instead it re-uses the same texture of the initial CT, which is warped according to 

the differences between the original scan and the simulated motion. Changes in the 

geometry of the moving organ, however, will alter the path length along which the 

radiation travels through the organ. This will cause variations in voxel intensity 

throughout the cardiac cycle. The change in voxel intensity during deformation is 

not reflected in the synthetic data creation technique discussed. 

 

One method discussed in the literature partly accounts for this by using a template 

4D DICOM dataset to partially increase the degree of realism of the generated syn-

thetic sequence [19]. This is achieved by spatio-temporal alignment of the template 
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sequence with the biomechanical model. In this method instead of warping a single 

static scan at the initial phase of the cardiac cycle, the template scan is warped by 

the biomechanical model at each of the respective phases. This partially accounts 

for the change in intensities that will be present as a result of deformation because 

it reduces the difference between the reference and deformed frames. The risk of 

unrealistic texture warping does, however, still exist with this method when the sim-

ulated motion of the model deviates too far from the template motion. That method, 

however, requires the presence of an initial 4D dataset. In novel studies such as this 

one, access to an initial 4D dataset is not always possible. A 4D CT protocol of the 

AAA is not yet utilized in the clinic. Once access to real data from this protocol is 

achieved, a future study can further validate the methods used by implementing this 

improved technique. 

 

A basic assumption made using the Demons algorithm is that the intensity of voxels 

remains constant through time. The geometry of the aneurysm, however, will be 

changing during the cardiac cycle, which, as discussed, will alter voxel intensities. 

Since this synthetic data is slightly unrealistic in that the intensity of voxels remains 

constant despite motion, the methods used on this artificial dataset are acceptable. 

When using real data, however, this may not remain true. An option for dealing with 

this issue could be to not register each frame to the initial frame, as was done using 

this synthetic dataset. Instead one could register each frame to the previous frame 

but use the preceding transform as an initialization to the registration. This would 

enable the constant intensity assumption to hold true as the geometry between con-

secutive frames would not change significantly.  

 

The next step required to progress this novel technique into normal clinical practice 

is an initial pilot study using real patient data. Further studies will need to establish 

the relationship between RSII and the progression of abdominal aortic aneurysms 

using follow up analyses. 
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Abstract    

The measurement of whole lung mechanics forms the basis of diagnostic 

measurements for many respiratory diseases. Despite this, there are currently no 
quantitative methods to link alterations in pulmonary microstructures to 

measurements of whole lung function. The normal decline in the lung’s 

microstructure that occurs with age is virtually indistinguishable from early disease 

on imaging or standard lung function measurements, leading to frequent 

misdiagnosis in the elderly. Accurate characterisation of lung mechanics across 

spatial scales has the potential to assist distinguishing age from pathology, which 

would benefit patients across a range of medical conditions and procedures. While 

computational modelling promises to be a useful tool for improving our 

understanding of lung mechanics, there is currently no unified structure-function 

computational model that explains how age-dependent structural changes translate 

to decline in whole lung function.  This paper presents novel instrumentation and 
imaging techniques for measurements of intact ex vivo lung tissue mechanics. We 

seek to address problems of weak parameterisation that existing models suffer from, 

due to lack of reliable measurements. To begin addressing this issue, we have 

developed a full-field stereoscopic imaging system for tracking surface deformation 

of the rat lung during pressure-controlled ventilation. This study presents a pipeline 

for the reconstruction and tracking of the intact left lobe of a rat lung during 

inflation, ex vivo. Model-based 3D reconstruction of the lungs enabled the 3D shape 

of a surface patch of the imaged lung to be determined. The 3D reconstruction and 

tracking of the fresh lung surface patch in this study was completed with three 

cameras across 21 pressure steps, encompassing a total pressure change from 2069 

Pa to 2386 Pa. This approach shows that reconstructing intact ex vivo fresh lungs, 

with no additional surface markers, is feasible. 
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1. Introduction 

Despite the importance of the lungs in delivering oxygen to the body, aspects of 

their mechanics remain poorly understood [1]. A key reason for this is that any 

disruption of the lung structure results in a change in the mechanical response of the 

tissue, making traditional mechanical testing poorly suited to investigating lung 

tissue [2]. Many studies have attempted to characterise the mechanics of lung 

tissues, however, it was not until the middle-to-late 20th century that respiratory 

mechanics began to be studied as a separate field, and it was during this time that 

the majority of our understanding was developed [3, 4]. Despite advances in 

imaging technologies, fundamental questions concerning key processes that occur 
in the lungs remain unanswered. For example, there is no unifying theory for 

alveolar dynamics and recruitment during respiration. It remains unclear if the 

alveoli expand isotropically, heterogeneously, or by a combination of both [5]. This 

has been debated in the literature, with consensus being hindered by difficulties in 

imaging the small and constantly moving alveoli during respiration.  

Computational modelling may prove to be a useful tool for improving our 

understanding of lung mechanics, and several computational models have been 

proposed for the mechanics of lung tissue. However, there is currently no unified 

structure-function computational model that explains how age-dependent structural 

changes translate to decline in whole lung function. Existing models suffer from 

weak parameterisation due to lack of available data. In this study, we designed a 

real-time full field stereoscopic imaging system for tracking lung surface 
deformation under pressure-controlled inflation. This system will enable us to 

acquire rich, accurate, robust, and previously unavailable physiological data on lung 

tissue mechanics from whole rat lungs, that can ultimately be used to parameterise 

computational models of lung mechanics.  

 

2. Methodology 

2.1 Lung Ventilation  

Fresh post-mortem lungs were acquired from female (350 ± 50) g Sprague-

Dawley rats, after the animals were sacrificed following separate experimental 

studies that did not involve the chest cavity. The Sprague-Dawley strain was chosen 

for two key reasons: similarities to humans in alveolar air-space enlargement with 

age [6]; and their relatively large alveoli (~90 μm diameter) [6] compared with lung 

size (~20 mL). A cannulated rat lung is shown in Fig 1.  

A CompactRio (National Instruments) based real time pressure control system 

was developed to control the inflation of the lungs. A syringe pump enabled real 

time pressure control, with volume and pressure resolutions of ±5 µl and ±5 Pa 
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respectively. A 100 ml glass syringe was mounted and actuated by a Physik 
Instrumente DC-Mike linear actuator that has an encoder resolution of 0.0592 µm. 

During stereoscopic imaging of the lungs, images were captured at regular 

intervals corresponding to increments/decrements in pressure of 15 Pa. Fig 2 shows 

the pressure-volume (PV) loops from the stereoscopic measurement of the lung 

lobe. The imaged inflation cycle (red in Fig 2) shows three cycles between 2000 Pa 

and 3000 Pa. The PV loops between 2000 Pa and 3000 Pa are approximately linear, 

with a small amount of hysteresis visible between 2800 Pa and 3000 Pa. There was 

an increase in lung volume of 0.2 mL across the three loops, when comparing the 

volumes at 2000 Pa.  

 

 

Fig 1. Inflated left lung lobe held at 3000 Pa, in a Petri dish full of phosphate buffered saline 

solution and cannulated with a plastic 16 Gauge blunted needle. 

 
Fig 2.  Left, PV loops from two full range inflations and an imaging cycle of three PV loops 
from 2000 Pa to 3000 Pa and back. Arrows depict the direction of increasing time. Right, 
expanded view of the three PV loops used for imaging.  
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2.2 Lung Surface Imaging  

A 12 camera full field stereoscope was designed and built in-house to enable 

imaging of the surface displacement of the lung during pressure-controlled 

inflation. FLIR BlackflyS monochrome cameras that feature a SONY IMX250 

sensor were selected for imaging the lung due to their high quantum efficiency and 

high signal to noise ratio (4760 signal to noise ratio or 73 dB dynamic range). The 

sensors had a 2448 pixel × 2048 pixel resolution (5.0 MP) with a 3.45 µm pixel size 

and were capable of imaging at 75 frames per second. The control code for these 

cameras was written in LabView (National Instruments), enabling data from all 12 
cameras to be saved concurrently.  

To ensure accurate 3D reconstruction of the imaged objects, the cameras were 

calibrated to find their intrinsic and extrinsic parameters, and the mounting of the 

cameras was designed for rigidity, to ensure that the cameras remain fixed relative 

to one another. The design and construction of this stereo system has been described 

previously for eight cameras [7]. Several modifications have been made since this 

was previously reported and are presented in the following sections.  

2.2.2 Stereo Rig Construction  

A rigid camera frame was designed in Solidworks. To ensure sufficient rigidity 

between the cameras, the geometry of the camera frame was designed as a regular 

octahedron, as shown in Fig 3. To ensure consistent lighting, eight high-power 
1270 lm LED Engin LZ1-10R200 light emitting diodes were used with diffusers to 

ensure even lighting and to reduce noise in the camera images. Image acquisition 

from the cameras was performed in LabVIEW and the cameras were synchronized 

using a hardware trigger from the pressure control FPGA. This enabled images to 

be triggered, based on changes in pressure. 
 

 
Fig 3. Frame constructed for performing full-field imaging of the lung surface during 
pressure-controlled inflation experiments. Left shows a CAD rendering of the stereo rig, 

Right shows the physical rig. 
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Lungs were dissected from the rats en bloc, with the heart and trachea attached. 

The heart and right lobes were removed, leaving the left lobe and a length of 

bronchus for cannulation. After cannulation of the lungs onto a blunted needle, they 

were attached to the syringe pump system. This enabled the initial inflation of the 

lungs from their collapsed state. The lungs were inflated to a pressure of 3000 Pa 

and held at that pressure until fully inflated. After a full inflation/deflation cycle, 

the lungs were bathed in phosphate buffered saline (PBS) to ensure that they 

remained hydrated. Post hydration, the lungs were mounted into the centre of the 

stereo camera system. 

2.2.3 Stereo Rig Calibration 

Camera calibration is necessary to achieve high accuracy imaging and 3D 
reconstruction. The accuracy of any 3D measurement made with a stereo imaging 

system depends, in part, on the accuracy of the calibration of the stereo cameras. 

The process of calibrating a camera system is a complex problem, which grows in 

complexity with every additional camera. The calibration method used in this study 

was developed by HajiRassouliha et al [8] using a checkerboard calibration 

template. This has been described by HajiRassouliha et al in [8] for cameras where 

all cameras could see the same calibration template. In this study, we extended the 

calibration approach to allow for calibration of all cameras in the stereo rig. This 

involved calibrating overlapping groups of four cameras, followed by an alignment 

of the calibrated cameras sets using a 3D triangular template with three white 

cellulose precision microspheres of a known diameter attached to each of its 

vertices. The diameters and spacing between spheres were identified using micro-
CT imaging with a resolution of 2.7 µm.  

2.2.4 Initial Surface Reconstruction 

The first step in an inflation was to acquire images of the ex vivo lung while it 

was illuminated by a laser line, as depicted in Fig 4. Images including laser lines 

were acquired without LED illumination These data were used to generate an initial 

3D reconstruction of the lung shape. This involved segmenting and fitting the laser 

lines on the lung lobe using piecewise cubic splines in each of the 2D images from 

each camera view. The pixel coordinates of these splines were triangulated into 3D 

space by determining their locations across multiple cameras using an intersecting 

ray approach, as described in [11], with the requirement that four rays intersect for 

a point to be considered valid. This resulted in a 3D point cloud which described 
the surface of the lung. 

Immediately after laser line data acquisition, the lungs were cyclically inflated 

and deflated for imaging. 
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Fig 4. Examples of laser line images. The lungs were held at a fixed pressure while each line 

was acquired individually. In this data set, the lungs were held at 2000 Pa. Firstly, images of 
the lungs were taken at different levels of illuminations from LEDs, then 22 images were 
recorded of individual laser lines on the lungs. 

2.3 Lung Fixing and Micro Computed Tomography (CT) Imaging  

To obtain an initial estimate of the 3D shape of the lungs, after stereoscopic 

imaging, lungs were fixed and imaged using a Bruker SkyScan 1272, micro-CT 

scanner at a pixel resolution of 25 µm. The lungs were fixed by inflating the lungs 

with 2.5 % glutaraldehyde buffered with phosphate buffered saline solution, up to 

a pressure of 2450 Pa (25 cmH2O). Tissue samples fixed in glutaraldehyde are 

extensively cross-linked, providing excellent ultrastructural stiffening that 

maintains the structure of the alveoli, enabling imaging with micro-CT [9]. This 

process was carried out after stereoscopic imaging, as cross-linking reactions of 

glutaraldehyde are largely irreversible [10]. 

The lungs were held at the fixation pressure for 24 h. After 24 h the lungs were 

attached to a regulated air source, which maintained an even pressure of 2450 Pa 
(25 cmH2O) to air dry the fixed lungs. The result of this process was a dried lung 

lobe, with no living tissues, and with the structural proteins cross-linked to maintain 

the lung structures. An example of this can be seen in Fig 5.  

The micro-CT image of the lung lobe, shown in Fig 5, enabled the creation of a 

mesh of the lung lobe. This process started with thresholding of the 2D images to 

create binary masks. Any holes in the masks were corrected manually. An ITK-

based marching cubes algorithm was then implemented to convert each binary mask 

into a 3D isosurface, which was converted into a point cloud that represented the 

surface of the lungs from the micro-CT data. While some discrepancies were 
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introduced by the cross-linking procedure and shrinkage during the air-drying 
process, the mesh of the fixed lung generated from micro CT imaging provided a 

close approximation to the shape of the unfixed lung. 

 

 
Fig 5. Left, Micro-CT of the fixed lung lobe. Right, view of fixed speckled lung from a single 
camera. 

 2.4 Improving Lung Surface Reconstruction and Tracking Motion 

The dense point cloud created from the segmented micro-CT data described in 

Section 2.3 was aligned to the sparsely reconstructed laser line data acquired from 

the stereo rig described in Section 2.2.4 using a coherent point drift algorithm to 

rigidly translate, rotate, and scale the point cloud.  

A quadratic Lagrange surface mesh was fitted to the aligned micro-CT point 

cloud using the fitting algorithms in GIAS2 [12], which minimises the weighted 

sum of the projections of the point cloud onto the surface. The result of this 

procedure was an initial surface mesh that was aligned with the position of the 

stereo-imaged lung, as shown in Fig 6. 
 

 

Fig 6. Fresh lung meshes. Laser line points are white. The micro-CT point cloud is green, 
and the quadratic patch Lagrange patch is gold to black. 
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A model-based reconstruction approach was then used to improve upon the 
initial reconstruction, by mapping texture information across camera views to 

generate a dense set of corresponding 3D points on the lung surface [11]. In this 

case, the micro-CT surface mesh was used as a prior model to aid reconstruction of 

the lung surface. This involved projecting pixels from a reference camera (in this 

case, Camera 1) onto the quadratic Lagrange micro CT surface mesh. These points 

were then backprojected to another camera’s sensor (in this case, Camera 2) and 

resampled to generate a new image, which closely resembled the real view from 

Camera 2.  Cross-correlation techniques were then used to identify corresponding 

points between the resampled image and the real image from Camera 2. These 

corresponding points were then triangulated to generate a 3D reconstruction of the 

surface. This operation requires knowledge of the positions of the cameras, which 
were found during the camera calibration procedure. 

The lung surface was reconstructed in this manner at the same inflation pressure 

used for fixing the lung. The motion of the lung surface during subsequent inflation 

pressure steps was tracked by performing 2D cross-correlation of the reconstructed 

corresponding points across the images acquired from each individual camera. 

These tracked image points were then triangulated to provide a 3D surface 

reconstruction at each of the inflation pressures. 

 3 Results   

3.1 Tracking of Intrinsic Features 
One of the primary concerns with reconstructing and tracking the motion of the 

fresh lung lobes was the lack of surface texture. To test the ability of the 2D subpixel 

image registration code [13] to track the intrinsic features of the fresh lung lobe, 

tracking was performed on a single camera view of a lung across several pressure 

steps, as shown in Fig 7. 

 

 

Fig 7. Single camera tracking of the intrinsic features of a left lung lobe. The pressure 

difference between the reference image and tracked image is shown in the top left. 

Confidence thresholds [13] were set to remove points that did not have a strong 
correlation peak. Fig 7 illustrates that the subpixel image registration method is 

capable of tracking intrinsic features on the surface of the fresh lung. Failure of the 
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2D subpixel image registration algorithm would result in no or randomly oriented 
vectors being returned. The patchy, non-uniform pattern visible in Fig 7 is a result 

of the single camera tracking not having sufficient data to capture the displacements 

of the complex 3D surface of the lung.   

3.1 3D Reconstruction Results  
To test that reconstruction was effective on fresh lung, a region of interest (ROI) 

on the back of the lung, which had few specular reflections, was selected, as can be 

seen in Fig 8. 

 

 

Fig 8. Region of interest for a reference camera selected on fresh lung. In the reference state 
the lung was inflated to 2069 Pa. 

The model-based reconstruction approach described in Section 2.4 was then 

applied to determine corresponding points with the region of interest across the 

other cameras in the rig that could see the same region. For the selected ROI, two 

other cameras could see the same region. The resulting set of corresponding points 
were then triangulated to find their 3D locations, as seen in Fig 9. 

The 3D locations of these points were then tracked across a range of inflation 

pressures. This resulted in a 3D deformation field, such as that seen in Fig 9 and Fig 

10. 

 
Fig 9. Reconstructed lung surface points displayed as spheres, coloured by displacement 
magnitude, viewed from three angles to display the surface curvature. 
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Fig 10. 3D location of the fresh lung surface tracked during inflation. The first frame is shown 
overlaid on the quadratic Lagrange mesh. 

The 3D reconstruction of the fresh lung enabled tracking of the motion of the 

lung as a result of pressure increases. In this study, the fresh lung was tracked across 

a pressure change of 317 Pa. Over this range, the mean magnitude of the 3D motion 

(0.525 mm) was computed by determining the Euclidean distances between point 
positions at each pressure. Areas of non-uniformities in the displacement vectors 

are likely due failure to identify corresponding points across the three cameras. 

Spurious vectors could be eliminated by adjusting the cross-correlation confidence 

thresholds to be appropriate for 3D tracking. 
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4. Summary  

This paper presents a pipeline for the reconstruction and tracking of the 3D 

motion of the ex vivo, intact, left lobe of a rat lung, as a result of changes in pressure. 

Model-based 3D reconstruction of the lungs enabled corresponding points to be 

found between camera views of the fresh lungs. From these, the 3D shape of a patch 

of the imaged lung could be determined.  

The 3D reconstruction of the fresh lung patch in this study was completed with 

three cameras across 21 pressure steps, encompassing a total pressure change of 

317 Pa. The 317 Pa pressure increase resulted in the total mean magnitude of the 

motion of the lung being 525.7 µm. 
This study shows that the 3D reconstruction of the surface of the lungs, using 

only intrinsic features, is a viable approach to determine 3D shape. A prior 3D mesh 

was generated from a micro-CT reconstruction of a fixed lung. This mesh was 

aligned with sparse stereoscopic points identified using a combination of laser line 

identification and boundary identification on the fresh lung in the stereo-imaging 

rig. It was shown in this study that a combination of laser line and boundary point 

identification was sufficient to align the stereoscopic data with the mesh. A model-

based reconstruction approach was then used to map texture information across 

camera views to generate a dense set of corresponding 3D points on the lung 

surface. 

The reconstruction in this study focused on using three cameras to reconstruct a 

patch of the lung. This demonstrated the feasibility of using such a pipeline for the 
reconstruction and tracking of fresh lung tissue across a range of pressures without 

the need for additional surface markers. 

The pipeline presented in this chapter represents the first stereoscopic imaging 

of ex vivo lungs. In addition, this work provides the first 3D tracking of the surface 

motion of the lungs using only intrinsic features.  

As part of future work, we aim to extend the reconstruction to the whole lung, 

making use of all 12 cameras. This will enable 3D tracking of whole lung motion. 

From this, it will be possible to determine the volume change in the lung as a result 

of changes in pressure. This will, in turn, enable the assessment of the accuracy of 

the reconstruction, as volume change in the inflation system is directly measured. 

Future studies will apply these methods of measuring 3D deformations to identify 
and model the constitutive properties of the intact lung tissue. 
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Abstract    

We present a flux-conservative finite difference (FCFD) scheme for solving inhomogeneous anisotropic bioelectric 
problems. The method applies directly on the raw medical image data without the need for sophisticated image anal-
ysis algorithms to define interfaces between materials with different electrical conductivities. We demonstrate the 
accuracy of the method by comparison with analytical solution. Results for a patient-specific head model highlight 
the applicability of the method.  

Keywords: Flux-Conservative Finite Difference, Anisotropic electrical conductivity, Bioelectric field, Epilepsy 

1 Introduction 

Epilepsy is a neurological condition of recurrent or unprovoked seizures that is thought to affect 1% of children [1]. 
Antiepileptic drugs serve as the primary treatment [2]. Treatment strategy relies on two key issues. First, the quality 
of life of an epileptic patient fails to improve until the permanent cessation of seizures. Second, one third of patients 
experience drug resistance [2, 3]. Surgery to remove or alter the region of the brain where seizures originate is recom-
mended to patients who fail to respond to antiepileptic drug therapy [4]. 
 
Around 100,000-500,000 patients in the United States of America with drug-resistant epilepsy are surgical candidates 
each year [2]. However, due to the high risk associated with the surgical procedure, less than 1% of patients are treated 
this way [2]. For surgical epileptic seizure management, there are two realistic options available: focal resection; or 
disconnection of the epileptogenic cortex [3]. Of these two options, only complete focal resection of the epileptic 
lesion offers the possibility of eliminating seizures. 
 
Success of the surgical intervention depends on the ability to accurately identify the seizure onset zone (SOZ), which 
is to be resected. Intracranial electrodes help to identify the SOZ and map eloquent areas of the brain [6]. Currently, 
the clinical standard for identifying the SOZ are invasive electroencephalography (iEEG) grids and strips, or stereo-
EEG (sEEG) electrodes, deployed stereotactically through holes in the skull [5]. The iEEG or sEEG data recorded 
during the day is collected and manually interpreted by expert neurophysiologists to identify the electrode(s) most 
implicated in seizure onset.  
 
Patients (usually young) unable to tolerate conscious cortical mapping for resection are candidates for intracranial 
electrode-mediated extra-operative mapping [3]. The aim of this mapping is to identify the epileptogenic zone. This 
zone, which is characterized by low-voltage, fast-current neuronal activity, represents the minimum amount of cortex 
that must be resected to eliminate seizures [7]. Magnetic resonance images (MRIs) are routinely used to determine the 
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distribution of various tissue types throughout the brain. EEGs are used to localize the SOZ and the corresponding 
area of the brain, which is known as the eloquent cortex [8]. Following the initial MRI, patients undergo a craniotomy 
to implant intracranial EEG electrodes to the edges of the dura [3]. A low-resolution computed tomography (CT) scan 
is then used to locate the electrodes within the deformed brain [9]. 
 
Source localization of the epileptic zone can be enhanced using computational methods combined with the available 
imaging modalities. The pre-surgical planning capabilities for resection of the epileptogenic cortex will then be more 
accurate. Calculating the voltage distribution throughout a patient-specific head model is a key component of the 
forward problem of EEG source localization. The forward problem has been solved in previous studies using a pre-
operative brain model [4, 7, 10-11]. However, a more efficient method for computing the voltage terms is required for 
patient-specific applications and efficient implementation into the clinical workflow. Previous studies employed finite 
element methods or boundary element methods to localize the epileptogenic source [12-14]. These methods, however, 
are limited by their dependence on meshes that sufficiently capture the discontinuity of electrical conductivities be-
tween the differing media within the head [15]. Another issue with mesh-based methods is their reliance on pre-
determined boundary positions at patient-specific conductivity interfaces within the cortex. Although a high-quality 
mesh will provide a simple solution to the forward problem, it requires an experienced analyst, thereby decreasing the 
practicality of implementing this technology into clinical practice.  
 
In this study, we apply the flux-conservative finite difference (FCFD) method to numerically solve the forward prob-
lem of EEG source localization. The bioelectric problem is described by a set of partial differential equations. FCFD 
method discretizes these equations into a system of linear algebraic equations. The numerical solution of the linearized 
system determines the electric potential distribution throughout a patient-specific conducting volume (head model). 
The FCFD method applies to the rectangular grid of material properties extracted from patient data. This eliminates 
image segmentation and meshing that is required in mesh-based methods. The conductivity assigned to each node is 
used to form a system of linear equations that is then solved to compute the voltage term. We apply an anisotropic 
tensor for the electrical conductivity. We solve a simple problem with analytical solution to highlight the accuracy of 
the proposed scheme before applying it to a patient-specific head model of an epilepsy patient. 

2 Methods 

2.1 Electromagnetic Modeling Using the Flux-Conservative Finite Difference Method   

2.1.1 Governing equations  

Source localization methods usually use a linear model, often called leadfield matrix, to correlate measured electrode 
voltages to their cerebral current sources. Computing the leadfield matrix requires the numerical solution of Maxwell’s 
equations within the head (conducting medium). Since the frequencies employed for EEG are typically less than 100 
Hz, transient signals are negligible, and the quasi-static approximation can be employed [4]. Therefore, the relationship 
between current sources and the induced voltage field is given as:  

 
				𝛁 ∙ $𝝈&(𝒙)∇Φ(𝒙), = 𝛁 ∙ 𝑱(𝒙)																																																																																																																																																					(1) 
 
with Φ(𝒙) being the voltage potential at location 𝒙 in the spatial domain Ω, 𝝈&(𝒙) the spatially varying conductance 
of the volume, and 𝑱(𝒙) the current source density at the nodes of the volume. The inhomogeneous conductivity tensor 
𝝈&(𝒙) can be represented by a 3 × 3 matrix as 

 



3 

		𝝈&(𝒙) = 3
𝜎55 𝜎56 𝜎57
𝜎65 𝜎66 𝜎67
𝜎75 𝜎76 𝜎77

8																																																																																																																																																												(2) 

 

while the left-hand side of Eq. (1) in its expanded form is given as 
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Using the Taylor series expansion and applying the flux-conservative finite difference scheme we can compute the 
spatial derivatives of Eq. (3). In the FCFD method, we can efficiently and accurately deal with the anisotropy and the 
discontinuities in the electrical conductance of the different materials (e.g. bone, soft tissue) in the brain. In the FCFD 
method we do not apply the chain rule in the computation of the spatial derivatives in Eq. (3), instead we treat the 
terms in the parenthesis for the spatial derivatives 𝝏

𝝏𝒙
, 𝝏
𝝏𝒚
, 𝝏
𝝏𝒛

 as the unknow field functions. Therefore, the typical 
methodology applied in the classical FD methods is extended to account for the anisotropy of the field variables.   

2.1.2 Flux-Conservative Finite Difference Method  

The FD method works efficiently on Cartesian grids (that can be directly obtained from DICOM images) and computes 
the nonlinear convective term 𝛁 ∙ $𝝈&(𝒙)∇Φ(𝒙), by applying a flux-conservative scheme. All Flux-Conservative FD 
formulations give a nodal equation for the potential field Φ(𝒙) at each node of the grid. The nodal equations finally 
form a linear algebraic system which can be solved using direct or iterative solvers (for FD method several robust 
solvers exist). 
 

 
 

 
Fig. 1. The 3D stencil configuration used in the flux-conservative finite difference method. 

This scheme computes spatial derivatives for the electric field using the stencil defined in Fig. 1. This is identical to 
the classical FD stencil except that in the FCFD stencil, fluxes in the fictitious grid points ((i+1/2,j), (i-1/2,j), (i,j+1/2), 
(i,j+1/2)) are preserved. Computation of the diffusion term at the grid points ((i,j), (i-1,j), (i,j+1), (i,j+1), (i,j-1)) will 
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lead to an erroneous non-conservative FD formulation. Application of classical (non-conservative) FD stencil by di-
rectly applying the chain rule to compute the spatial derivatives of the convective term will lead to incorrect calculation 
of fluxes.  
 
Using the flux conservative approach, the terms at the central node (i,j,k) of the stencil shown in Fig.1 can be written 
(for the x coordinate) as 
 

𝜕𝑄5

𝜕𝑥 =
𝑄
GHIHJ,K,LM
5 − 𝑄

GHOHJ,K,LM
5

ℎ5
																																																																																																																																																							(4) 

 

where  
 

𝑄5 = 𝜎55
𝜕Φ
𝜕𝑥 + 𝜎56

𝜕Φ
𝜕y + 𝜎57

𝜕Φ
𝜕𝑧 																																																																																																																																															(5) 

 
We compute the terms 𝜎55,	Φ,5, 𝜎56, Φ,6, 𝜎57 and Φ,7 on the off-grid nodes G𝑖 + H

J
, 𝑗, 𝑘M and G𝑖 − H

J
, 𝑗, 𝑘M. The elec-

trical conductance 𝜎55, 𝜎56, 𝜎57 values are not defined on the off-grid nodes. Instead, they are computed using inter-
polating/approximating methods such as arithmetic averaging of the known values for the electrical conductance on 
the grid nodes, or the harmonic average. The former applies for the case of the 𝜎55 electrical conductance (the same 
applies for 𝜎56 and 𝜎57) as 
 

𝜎55GVIHJ,K,LM
=
𝜎55(VIH,K,L) + 𝜎55(V,K,L)

2 																																																																																																																																											(6) 

 

while the latter is written as 
 

𝜎55GVIHJ,K,LM
=

2𝜎55(VIH,K)𝜎55(V,K)
𝜎55(VIH,K) + 𝜎55(V,K)

																																																																																																																																																(7) 

 

The two approaches, despite their success in delivering reliable results, may result in decreased accuracy for the nu-
merical solution when steep gradients in material properties (higher than 6 orders of magnitude) are present. This is 
because only the two nodes adjacent to the fictitious point are used in the computation, disregarding all the other nodes 
in the close vicinity. High order methods can be used to provide more accurate results but these increase the compu-
tational cost.  
 
Furthermore, we need to compute the spatial derivatives of the electrical potential Φ(𝒙) on the off-grid nodes. The 
derivative Φ,5 on the G𝑖 + H

J
, 𝑗, 𝑘M and G𝑖 − H

J
, 𝑗, 𝑘M nodes is given as  

 
𝜕Φ(VIH/J,K,L)

𝜕𝑥 =
Φ(VIH,K,L) − Φ(V,K,L)

ℎ5
																																																																																																																																														(8) 

 

and 
 
𝜕Φ(VOH/J,K,L)

𝜕𝑥 =
Φ(V,K,L) − Φ(VOH,K,L)

ℎ5
																																																																																																																																														(9) 
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The derivative Φ,6 on the G𝑖 + H
J
, 𝑗, 𝑘M and G𝑖 − H

J
, 𝑗, 𝑘M nodes is given as  

 

𝜕Φ(VIH/J,K,L)

𝜕𝑦 =
ΦGVIHJ,KIH/J,LM

− ΦGVIHJ,KOH/J,LM

ℎ6
																																																																																																																							(10) 

 

and 
 

𝜕Φ(VOH/J,K,L)

𝜕𝑦 =
ΦGVOHJ,KIH/J,LM

− ΦGVOHJ,KOH/J,LM

ℎ6
																																																																																																																							(11) 

 
where 
 

ΦGVIHJ,KIH/J,LM
=
Φ(V,K,L)+Φ(VIH,K,L)+Φ(VIH,KIH,L)+Φ(V,KIH,L)

4 																																																																																															(12) 

 

ΦGVIHJ,KOH/J,LM
=
Φ(V,K,L)+Φ(VIH,K,L)+Φ(VIH,KOH,L)+Φ(V,KOH,L)

4 																																																																																															(13) 

 

ΦGVOHJ,KIH/J,LM
=
Φ(V,K,L)+Φ(V,KIH,L)+Φ(VOH,KIH,L)+Φ(VOH,K,L)

4 																																																																																															(14) 

 

ΦGVOHJ,KOH/J,LM
=
Φ(V,K,L)+Φ(V,KOH,L)+Φ(VOH,K,L)+Φ(VOH,KOH,L)

4 																																																																																															(15) 

 

Finally, the derivative Φ,7 on the G𝑖 + H
J
, 𝑗, 𝑘M and G𝑖 − H

J
, 𝑗, 𝑘M nodes is given as  

 
𝜕Φ(VIH/J,K,L)

𝜕𝑧 =
ΦGVIHJ,K,LIH/JM

− ΦGVIHJ,K,LOH/JM

ℎ7
																																																																																																																							(16) 

 

and 
 

𝜕Φ(VOH/J,K,L)

𝜕𝑧 =
ΦGVOHJ,K,LIH/JM

− ΦGVOHJ,K,LOH/JM

ℎ7
																																																																																																																							(17) 

 

where 
 

ΦGVIHJ,KIH/J,LM
=
Φ(V,K,L)+Φ(VIH,K,L)+Φ(VIH,KIH,L)+Φ(V,KIH,L)

4 																																																																																															(18) 

 

Consequently, for computing the partial derivative with respect to x for the 𝑄5 term, eight neighbors are involved.  
Figure 2 shows the grid nodes used in the computation of the term ]

]5
G𝜎55

]^
]5
+ 𝜎56

]^
]_
+ 𝜎57

]^
]7
M. 
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Fig. 2. The 3D stencil configuration used in the flux-conservative finite difference method. 

 
The same procedure applies for the other two partial derivatives ]

]6
G𝜎65

]^
]5
+ 𝜎66

]^
]_
+ 𝜎67

]^
]7
M and ]

]7
G𝜎75

]^
]5
+

𝜎76
]^
]_
+ 𝜎77

]^
]7
M in Eq. (3). Therefore, twenty-seven neighboring nodes form the stencil for computing the left-hand 

side in Eq. (1). The right-hand side (𝛁 ∙ 𝑱(𝒙)) is also defined on the grid nodes and can be defined as a continuous 
function, discretized over the nodes, or as point sources.   

3 Results 

3.1 Verification of the FCFD scheme 

 
To demonstrate the accuracy of the proposed FCFD scheme we solve the Laplace equation for an inhomogeneous 
anisotropic medium in a unit volume box. The problem has an analytical solution of the form 

 

Φ(𝒙) = 𝑒5I6I7																																																																																																																																																																														(19) 
 

For an inhomogeneous anisotropic medium, the conductivity tensor giving the  the analytical solution has the form 
 

𝝈&(𝒙) = 3
𝑒5I6I7 −0.25𝑒5I6I7 −0.75𝑒5I6I7

−0.25𝑒5I6I7 1.5𝑒5I6I7 −1.25𝑒5I6I7
−0.75𝑒5I6I7 −1.25𝑒5I6I7 2𝑒5I6I7

8																																																																																																			(20) 

 

We apply Dirichlet boundary conditions on the boundary nodes, according to the analytical solution (Eq. 19). 
 
The linear system of the Laplace equation can be solved using direct or iterative solvers. The former are extremely 
accurate but have memory limitations, especially for 3D problems with large number of nodes. The latter do not 
always converge but are extremely efficient and have less computational cost compared to direct solvers. For the 
systems used in the present study, we use the minimum residual method, which applies to nonsymmetric systems. We 
used an Intel i7 quad core processor with 16 GB RAM for our simulations. 
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We compare the numerical solution against the analytical one using the Normalized Root Mean Square Error defined 

as 𝑁𝑅𝑀𝑆𝐸 =
gh
i
∑ Gkl

mnopqlrstOkl
smstuvlrstM

wi
lxh

kosy
smstuvlrstOkolm

smstuvlrst . To study the convergence of the solution, we used successively denser 

grids starting from 51 × 51 × 51 up to 201 × 201 × 201. 
 
Table 1. Maximum relative error and normalized root mean square error (NRMSE) for increasing grid resolution. 

Grid resolution Solution time (s) 𝑳{ NRMSE 

51 × 51 × 51 
101 × 101 × 101 
201 × 201 × 201 

13 
228 
3363 

2.21 × 10O| 
1.02 × 10O| 
6.72 × 10O} 

2.13 × 10O} 
7.08 × 10O~ 
6.59 × 10O~ 

 
The results (Table 1) suggest that both the maximum relative error and NRMSE will converge to zero as the number 
of nodes increases, confirming the accuracy of the FCFD scheme for solving anisotropic, three-dimensional, bioelec-
tric field problems. Figure 3 shows the potential distribution computed by the analytical solution at plane z=0.5 and a 
histogram displaying the differences, node by node, of the numerical solution with the analytical one for a grid reso-
lution of 1013. 
.  
 

 
 

(a) (b) 
Fig. 3.  Axial view of the (a) numerical solution and (b) histogram of the differences with the analytical solution using the flux-conserva-

tive finite difference method for the for inhomogeneous anisotropic medium verification problem. 

For source localization, the computational time needed to solve the forward problem is crucial because multiple for-
ward problems must be solved. Therefore, the accuracy and efficiency provided from the proposed scheme makes it 
a strong candidate to be used in clinical practice. 

3.2 Patient-specific head model 

In this section, we apply the FCFD method to a patient-specific head model of a five-year old epilepsy patient. The 
electrical conductivities were extracted from the patient’s diffusion-weighted MRI using the method described in [16]. 
A node was assigned to the corner of each voxel to create a 160 × 192 × 192 grid comprised of 5,898,240 points. An 
anisotropic conductivity was assigned to all nodes inside the conducting volume. The three-dimensional finite differ-
ence brain volume was comprised of white and grey matter, as well as cerebrospinal fluid and air. We model air, grey 
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matter and cerebrospinal fluid conductivities using isotropic tensors, while white matter fibers were assigned aniso-
tropic tensors. Using the Cartesian grid (voxels) directly from the raw data we avoid the need for image segmentation 
to assign constitutive properties. 

 
 

 
 

(a) (b) 
 

Fig. 4. (a) Sagittal and (b) axial view of the brain raw data 
 

We compute the electric potential distribution throughout the brain volume by applying the point electrode model. We 
selected electrodes as the source and sink. We apply a current of 1 A at the source, and we remove 1 A at the sink. In 
the presence of any external current source, Poisson’s equation (Equation 10) governs the potential distribution within 
the head volume incorporating anisotropic conductivity. At the boundaries, we enforce Neumann boundary conditions 
(Equation 2). We numerically solve the linear system of equations using the minimum residual method. We model air 
using an isotropic conductivity of 10O� (S/m), assigning this to all voxels outside of the head volume. This is demon-
strated in Figures 5(a)-(c) as the voltage approaches zero outside the skull-air interface boundary. 

 

  
(a) (b) 
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(c)  
 
Fig. 5. Electric potential distribution throughout the brain in (a) axial plane 103, (b) coronal plane 108, and (c) sagit-

tal plane 127.  

 

Figure 5 shows the electric potential distribution throughout the brain in the axial, coronal and sagittal planes. These 
slices center around the midpoint of the preselected source/sink configuration to best illustrate the voltage distribution 
(we positioned the source at (143, 114, 101) and the sink at (110, 102, 104)). As expected, the source and sink generate 
a voltage inside the conducting volume that is greatest close to the corresponding electrodes and approaches zero as 
the distance from these regions increases.  

4 Conclusion  

In this study, we successfully applied the FCFD method to numerically solve the bioelectric problem to obtain the 
voltage distribution throughout the head. We first applied the FCFD method to a simple problem with an analytic 
solution. Following verification, the proposed scheme has been applied to a patient-specific head model (created using 
raw medical image data) to compute the electric potential distribution throughout the conducting volume for a speci-
fied source/sink configuration.  
 
The accuracy of the patient-specific head model may be improved by using a complete electrode model instead of the 
point-electrode model used in the present study. The complete electrode model incorporates the size of the electrodes, 
their shape and the contact impedance, providing a better approximation of the electrode-tissue interface. With the 
point-electrode model, currents in the electrodes are not considered in the numerical solution. Therefore, the voltages 
close to the electrodes are of greater amplitude compared to those expected in real-world cases. 
 
Successful application of the proposed scheme enhances current pre-surgical planning capabilities for resection of the 
epileptogenic cortex.  In contrast to traditional mesh-based methods such as the finite element and boundary element 
methods, with our method there is no need for image segmentation and mesh generation. 
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