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Preface: 

A novel partnership between surgeons and machines, made possible by advances in computing 
and engineering technology, could overcome many of the limitations of traditional surgery. By 
extending surgeons' ability to plan and carry out surgical interventions more accurately and 
with less trauma, Computer-Integrated Surgery (CIS) systems could help to improve clinical 
outcomes and the efficiency of health care delivery. CIS systems could have a similar impact 
on surgery to that long since realized in Computer-Integrated Manufacturing (CIM). 
Mathematical modeling and computer simulation have proved tremendously successful in 
engineering. Computational mechanics has enabled technological developments in virtually 
every area of our lives. One of the greatest challenges for mechanists is to extend the success 
of computational mechanics to fields outside traditional engineering, in particular to biology, 
the biomedical sciences, and medicine.  

Computational Biomechanics for Medicine Workshop series was established in 2006 with the 
first meeting held in Copenhagen. The second workshop was held in conjunction with the 
Medical Image Computing and Computer Assisted Intervention Conference (MICCAI 2007) in 
Brisbane on 29 October 2007. It provided an opportunity for specialists in computational 
sciences to present and exchange opinions on the possibilities of applying their techniques to 
computer-integrated medicine.  

Computational Biomechanics for Medicine II was organized into two streams: Computational 
Solid Mechanics, and Computational Fluid Mechanics and Thermodynamics. The application 
of advanced computational methods to the following areas was discussed: 

� Medical image analysis;  
� Image-guided surgery;  
� Surgical simulation;  
� Surgical intervention planning;  
� Disease prognosis and diagnosis;  
� Injury mechanism analysis;  
� Implant and prostheses design;  
� Medical robotics.  

We received many more submissions than we could accommodate in a one-day workshop. 
After rigorous review of full (six-to-ten page) manuscripts we accepted 16 papers, collected in 
this volume. They were split equally between podium and poster presentations. The 
proceedings also include abstracts of two invited lectures by world-leading researchers 
Professors Peter Hunter and Dimitris Metaxas. 

Information about Computational Biomechanics for Medicine Workshops, including 
Proceedings of previous meetings is available at  
http://cbm.mech.uwa.edu.au/

We would like to thank the MICCAI 2007 organizers for help with administering the 
Workshop, invited lecturers for deep insights into their research fields, the authors for 
submitting high quality work, and the reviewers for helping with paper selection. 

Karol Miller 
Keith D. Paulsen  
Alistair A. Young  
Poul M.F. Nielsen
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A model sharing infrastructure for computational physiology 

P.J. Hunter 
Auckland Bioengineering Institute (ABI), University of Auckland, New Zealand 

p.hunter@auckland.ac.nz

Abstract
The Physiome Project of the International Union of Physiological Sciences (IUPS) is 
attempting to provide a comprehensive framework for modelling the human body using 
computational methods which can incorporate the biochemistry, biophysics and anatomy of 
cells, tissues and organs [1-4]. A major goal of the project is to use computational modelling to 
analyse integrative biological function in terms of underlying structure and molecular 
mechanisms. It is also establishing web-accessible physiological databases dealing with model-
related data at the cell, tissue, organ and organ system levels. Two major developments in 
current medicine are, on the one hand, the much publicised genomics (and soon proteomics) 
revolution and, on the other, the revolution in medical imaging in which the physiological 
function of the human body can be studied with a plethora of imaging devices such as MRI, 
CT, PET, ultrasound, electrical mapping, etc. The challenge for the Physiome Project is to link 
these two developments for an individual - to use complementary genomic and medical 
imaging data, together with computational modelling tailored to the anatomy, physiology and 
genetics of that individual, for patient-specific diagnosis and treatment.  

To support these goals the IUPS Physiome project is developing XML markup languages 
(CellML & FieldML) for encoding models, together with model repositories and software tools 
for creating, visualizing and executing these models [5]. 

The talk will describe current progress in the development of these markup languages, the 
model repositories, graphical user interfaces and the open source computational software being 
developed under the IUPS Physiome Project for computational physiology.  

References
1. Hunter, P.J. and Borg, T.K. Integration from proteins to organs: The Physiome Project. 

Nature Reviews Molecular and Cell Biology. 4, 237-243, 2003.  
2. Crampin, E.J., Halstead, M., Hunter, P.J., Nielsen, P.M.F., Noble, D., Smith, N.P.and 

Tawhai, M. Computational physiology and the Physiome  Project. Exp. Physiol. 89, 1-26, 
2004. 

3. Hunter, P.J. and Nielsen, P.M.F. A strategy for integrative computational physiology. 
Physiology. 20,316-325, 2005. 

4. Hunter, P.J. Modeling living systems: the IUPS/EMBS Physiome Project. Proceedings of 
the IEEE. 94:678-691, 2006. 

5. www.cellml.org   
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Integration of Multiple Imaging Data for improved Volumetric Cardiac 
Motion Analysis 

Dimitris Metaxas 
Rutgers University, Piscataway NJ, 08854, USA 

dnm@cs.rutgers.edu

Abstract
We present our recent efforts for the improved Volumetric Cardiac Motion Analysis based on 
data from multiple imaging modalities. First, we will present our framework for the automated 
spatiotemporal analysis of the heart's ventricles based on CT and tMRI data. Recent advances 
in CT have allowed the acquisition of high spatial resolution data that based on our deformable 
modeling methods we can build a detailed model of the ventricles.  We then estimate the 
cardiac motion for a full cardiac cycle using tagged data, which is hard to achieve with a model 
constructed from only sparse clinical tagged MR images. Our accurate estimation algorithms 
compute two sets of cues from tagged MRI, the intersections of the three tagging planes, and 
the intersections of the cardiac boundary with the tagging planes. The image forces on the 
intersections are interpolated onto the cardiac mesh vertices by tessellation and meshless FEMs. 
The LV motion reconstruction provides information for further analysis of cardiac mechanisms. 
Results on normal and pathologic hearts will be presented. Finally, we will present recent 
results on the accuracy of 2D ultrasound-based cardiac analysis by comparing it to tMRI based 
analysis. 
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Physiological Integration of Structural and Functional 
Cardiac Magnetic Resonance Imaging Using Finite 

Element Modelling  

Hoi Ieng Lam1, Vicky Yang Wang1, Daniel B. Ennis2, Alistair A. Young1,  
Martyn P. Nash1 

  
1 Bioengineering Institute, University of Auckland, New Zealand 

{h.lam, vicky.wang, a.young, martyn.nash}@auckland.ac.nz, 
2 Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA 

dbe@stanford.edu 

Abstract. The left ventricle (LV) of the heart adapts its structure and function 
during diseases such as diabetes, hypertension, and myocardial infarction. 
However, there exists insufficient knowledge about the biophysical processes 
underlying normal and impaired cardiac function. We implemented a finite 
element approach to integrate physiological, microstructural, and 
biomechanical information into a canine LV mathematical model, using data 
obtained from in vivo magnetic resonance imaging (MRI) tissue tagging, in vivo 
LV pressure recordings, and ex vivo diffusion tensor MRI (DTMRI). Initially, a 
regular ellipsoid was constructed based on estimates of base-to-apex and wall 
thickness dimensions obtained from MRI in the end-diastolic state. The 
epicardial and endocardial surface data, segmented from the tagged MRI data, 
were then used to generate a customised canine LV geometrical model using 
nonlinear finite element fitting techniques. Myofiber orientations, obtained 
from DTMRI of the same heart, were incorporated into the model using host 
mesh fitting. LV pressure recordings were temporally synchronized to the MRI 
tissue tagging data.  This methodology allows biophysical model parameters, 
such as the mechanical properties of the myocardium and activation 
characteristics, to be optimized to match the observed deformations and 
ventricular cavity pressures. Integrated physiological models for both normal 
and diseased conditions will then enable the comparison of biophysical 
parameters influencing cardiac function throughout the heart cycle.   

Keywords: Mathematical Modeling; Cardiac Magnetic Resonance Imaging 
(MRI); Diffusion Tensor MRI (DTMRI); Left Ventricle (LV); Tissue 
Mechanics; Finite Element. 

1   Introduction 

In diabetes or myocardial infarction, heart cells adapt to physiological, geometric and 
loading changes in the cardiac muscle that arise from hemodynamic and geometric 
changes or pathologic processes. This leads to chronic regional thickening or thinning 
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of the ventricular wall, and enhancement or degradation in regional muscle function. 
Studying the regional function of the ventricles can lead to an improved 
understanding of the underlying structural basis of ventricular mechanics. In 
particular, information about the regional ventricular function provides important 
insight into pathological conditions, such as myocardial ischemia and infarction, 
where there can be significant localized mechanical changes in the myocardium 
whilst the global function is unaffected [1]. 

Magnetic Resonance Imaging (MRI) is well suited to the investigation of cardiac 
disease effects, due to its ability to non-invasively quantify three-dimensional (3D) 
changes in geometry and function of the heart. MRI tissue tagging with dynamic MRI 
enables quantitative evaluation of cardiac mechanical function with high spatial and 
temporal resolution. MRI tissue tagging is a technique that saturates the MRI signal in 
parallel bands of tissue, thus creating high contrast image features that accurately 
reflect the deformation of the underlying tissue at any point in the cardiac cycle.  
Reconstruction of the 3D motion of the heart from the tag positions during the cardiac 
cycle requires specialized image processing and mathematical techniques [2]. 

Diffusion tensor magnetic resonance imaging (DTMRI) measures the preferred 
orientations of the local self-diffusion of water molecules in biological tissues. Earlier 
studies have shown that the direction of maximum diffusion (the primary eigenvector) 
correlates to the observed myofiber orientation from histological studies [3]. 
Therefore, the primary eigenvector can be used for mapping the true 3D orientation of 
the myocardial fibers throughout the myocardium [4]. Myocardial fiber orientation is 
an important determinant of myocardial wall stress [5] and shares a large regional and 
transmural variation.  

Integrating experimental information obtained from in vivo tagged MRI and ex 
vivo DTMRI adds insight to normal and abnormal regional cardiac function. This 
integration can be achieved by taking advantage of computer modelling to incorporate 
detailed information on ventricular geometry and myofiber orientation. A 
mathematical model of the heart is essential to this integrative approach. Previously, 
Augenstein et al developed methods for integrating MRI tagging, DTMRI and 
pressure recordings in ex vivo passive inflation experiments [6,7]. In this study, we 
extended this method to in vivo tagging and pressure recordings in dogs, using data 
acquired at the National Institutes of Health and Johns Hopkins University [8]. A 
graphical user interface (GUI) was developed for the segmentation of the epicardial 
and endocardial contours of DTMRI images, and readily identifiable landmark points 
on both the tagged and DTMRI images. Based on the DTMRI landmark points and 
MRI tissue tagging target points, a host mesh deformation approach was used to warp 
the fiber orientation data from the DTMRI images to the LV model by minimizing the 
distance between landmark and target points. The fiber orientations of the LV 
myocardium were extracted from each re-sampled DTMRI image by using the 
segmented contours.  
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2   Imaging and Segmentation 

2.1   MRI Tissue Tagging  

Imaging was performed using a General Electric 1.5T CV/i scanner and a 4 element 
phased array knee coil. Short axis stripe tagged images (Fig. 1) were acquired using 
the 3D fast gradient echo pulse sequence with the following parameters: 180mm x 
180mm x 128-160mm field of view, 384 x 128 x 32 acquisition matrix, 12° imaging 
flip angle, ±62.5kHz bandwidth, TE/TR=3.4/8.0ms, 5 pixel tag spacing, and 4 mm 
slice thickness. Long axis radially-oriented stripe tag images were acquired with a 2D 
fast gradient echo pulse sequence and the following parameters: 200mm x 200mm x 
8mm, 256 x 128 acquisition matrix, 12° imaging flip angle, ±31.25kHz bandwidth, 
TE/TR=3.2/8.0, 1 view per segment, and 7 pixel tag spacing.  

LV epicardial and endocardial contour segmentation and tag detection were 
performed on 11 evenly-spaced short axis MR tagged images spanning from the base 
to apex, and 12 long axis MR tagged images with an angular separation of 30º, using 
the Findtags program by Guttman et al [9]. The LV motion obtained from the tagged 
images was analysed using four-dimensional b-spline based motion analysis [10], 
where the positions and strains of regularly-spaced material points within the 
myocardium were tracked three-dimensionally and in time. LV pressure was also 
measured throughout the cardiac cycle during the tagged MRI. 

Fig. 1. A short axis MR tagged image at end-diastole (left) and end-systole (right). 

2.2   Diffusion Tensor MRI 

After performing the MR tagging study, the heart was excised and fixed in the end 
diastolic configuration for collecting DTMRI data (Fig. 2). The procedures are 
described in [8]. Diffusion tensor data was reconstructed from the diffusion weighted 
images and the eigenvector associated with maximum diffusion within each voxel 
was calculated in each DTMRI image. Each image had 256 x 256 in-plane 
measurements and there were 116 slices. The resolution of the DTMRI data was 
390μm x 390μm x 800μm. 

Physiological Integration of Structural and Functional Cardiac Magnetic Resonance Imaging Using Finite Element Modelling
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Fig. 2. (Left to right) Anatomical (b=0) image, and maps of x, y, and z component of the 
maximum diffusion eigenvector.  

2.3   Surface Contour Segmentation of DTMRI Images  

The segmentation of the epicardial and endocardial contours of each DTMRI image 
was performed manually using an in-house developed GUI. The GUI can display the 
tagged MR images simultaneously with the DTMRI images such that comparison 
between the two sets of image data can be done more conveniently. The DTMRI 
images can be rotated in-plane in the GUI to line up their orientation with the MR 
tagged images. 

2.4   DTMRI Image Resampling 

As illustrated in Fig. 3(a), the MR tagged images and the DTMRI images were 
orientated and scaled differently relative to the heart. This is because the shape of the 
heart was different when imaged in vivo versus ex vivo and the orientation of the 
prescribed cardiac long axis varied between imaging studies. Furthermore, the 
through-plane resolution of the two image data sets was substantially different, with 
each MR tagged image slice and each DTMRI image slice having a thickness of 4 
mm and 0.8 mm, respectively. The low through-plane resolution of the MR tagged 
images implied that standard image based non-rigid registration between the two data 
sets would not be the optimal choice. However, the high through-plane resolution of 
the DTMRI images would allow new DTMRI images to be reformatted with the same 
orientation and location as the tagged images within the heart.   

Since the tagged MR images and the DTMRI images were acquired under different 
conditions, both data sets were transformed into a standard cardiac coordinate system, 
where the x-axis is defined to be the long-axis of the heart i.e. running from base to 
apex, the y-axis points from the LV centre towards the right ventricle (RV) and z-axis 
points from the anterior towards the posterior of the heart. The origin of the cardiac 
coordinate system is defined to be at one third from the base of the heart along the x-
axis. 

Image resampling of the DTMRI images was achieved by matching cardiac 
coordinate systems between the two datasets, and then locating the coordinates of the 
corners of the MR tagged images within the DTMRI image volume matrix (Fig. 3(a)). 
The coordinates of each pixel of each MR tagged image within the DTMRI image 
volume matrix were then obtained (Fig. 3(b)). The DTMRI image volume matrix was 

Hoi Ieng Lam, Vicky Yang Wang, Daniel B. Ennis, Alistair A. Young, Martyn P. Nash
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then resampled at the locations of the MR tagged images within the volume, and also 
at evenly-spaced parallel planes between the MR tagged images (Fig. 3(c)).  

 
(a)       (b)         (c) 

Fig. 3. (a) The DTMRI image slice planes (lines) and the segmented contours of the MR tagged 
images (markers) plotted in the cardiac coordinate system, showing the misalignment between 
the two data sets. (b) The slice positions of the MR tagged images transformed into the DTMRI 
image volume (confined by the box). The DTMRI image volume was resampled at these slice 
positions of the tagged images. (c) The resampled DTMRI image slice planes (lines) and the 
contours of MR tagged images (markers) plotted in the cardiac coordinate system.  

2.5 Fibre Orientation Data Extraction 

The three components of the maximum diffusion eigenvector, which were stored in 
three separate matrices, were associated with each pixel of the DTMRI image. Only 
the eigenvectors associated with the LV myocardium were of interest in this study, 
thus it was necessary to extract the three components of these eigenvectors from the 
three matrices. First, contours of the re-sampled DTMRI images were manually 
segmented using the GUI (Fig. 4). These contours were then used to create a mask 
such that pixels not within the LV myocardium were excluded from the image. The 
mask for the DTMRI image was eroded by 1 pixel to exclude the noisy pixels at the 
edge of the myocardium.  
 

 
(a)                (b)         

Fig. 4. (a) DTMRI anatomical image with its segmented contour. (b) Myocardial fibre 
orientation (in two-dimension) at the location of the myocardium extracted using the mask 
created from the segmented contours.  

Physiological Integration of Structural and Functional Cardiac Magnetic Resonance Imaging Using Finite Element Modelling
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2.6  Landmark Selection 

The GUI described above also allows the selection of fiducial markers (e.g. papillary 
muscles, RV inserts) on the MR tagged images and the corresponding re-sampled 
DTMRI images (Fig. 5). For each pair of corresponding MR tagged image and 
DTMRI resampled image, fiducial markers were first selected from the tagged image 
and each marker was sequentially assigned a number to indicate the order of 
selection. Then the same number of fiducial markers was selected on the DTMRI 
image in the same sequential order. The fiducial markers selected on the MR tagged 
images were referred to as target points, and those on the DTMRI images were 
referred to as landmark points and were used for host mesh fitting. 
 

 

Fig. 5. A screenshot of the GUI showing the manually segmented contours on the DTMRI 
image (right side), and the manually selected fiducial markers on both the MR tagged image 
(left side) and DTMRI image. 

3 Host Mesh Fiber Mapping 

As described above, the segmented contours of the DTMRI images and the tagged 
MRI images exhibited different orientations in 3D, since the canine heart was imaged 
during different conditions. Therefore, it is necessary to ensure that the geometry 
defined by the DTMRI images and the tagged MR images was consistent before the 
fiber orientation data were incorporated to the finite element geometric model created. 
This was achieved by performing host mesh fitting, a technique which was designed 
to customize generic models to specific cases [11]. In our study, we used the host 
mesh fitting technique to warp the DTMRI data into the in vivo geometric model 
defined by the tagged MRI data. This host mesh fitting approach involved minimizing 
the distance between two sets of points: landmark points selected from the resampled 
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DTMRI images and corresponding target points selected from the MR tagged images. 
This minimization was implemented by embedding the landmark points in another 
finite element mesh, called the host mesh and minimizing the total squared error with 
respect to host mesh nodal parameters. The host mesh used for this study was a 
simple tri-cubic mesh consisting of 1 element connected with 8 element nodes (Fig 6). 
Since the target points were embedded in the host mesh, any deformation the host 
mesh underwent caused an interpolated degree of deformation for the target points. 
That is, the local coordinates of the target points with respect to the host mesh 
remained unchanged before and after deformation. Because the host mesh had a 
simpler geometry and fewer number of elements, the computational cost of this 
minimization was reduced significantly, an important benefit of host mesh fitting. 
Once the optimum host mesh nodal parameters were evaluated, the global coordinates 
of landmark points were updated based on the local coordinates defined with respect 
to the host mesh nodal parameters and the transformation matrix obtained during 
fitting. The same transformation matrix was also applied to the DTMRI data so that 
the geometries defined by DTMRI and tagged MRI were consistent. Subsequently, 
fiber orientations could then be embedded into the geometric model using the 
deformation gradients from the host mesh transformation, and used for mechanical 
analysis.  

 
(a) (b) 

          
(c)       (d) 

Fig. 6. (a) Undeformed host mesh (lines) with landmark points (light) and target points (dark). 
(b) Deformed host mesh with target points and transformed landmark. (c) A through-plane 
view of the landmark and target points for one slice before host mesh fitting. (d) A through-
plane view of the landmark and target points from the same slice after host mesh fitting. The 
host mesh fit reduced the root mean squared error between landmark and target points from 4.1 
mm to 0.8 mm.   

Physiological Integration of Structural and Functional Cardiac Magnetic Resonance Imaging Using Finite Element Modelling
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4 Left Ventricular Finite Element Model 

4.1 Left Ventricular Anatomy and Structure  

A mathematical model of the LV was created in the cardiac coordinate system based 
on non-linear finite element optimization of the model geometry to the segmented 
contours of the MR tagged images (Fig. 7). A regular ellipsoid was initially created in 
a prolate spheroidal coordinate system, using dimensions based on the base-to-apex 
dimension and wall thickness estimated from MR tagged images. Prolate spheroidal 
coordinates were used to define the heart geometry in order to reduce the number of 
elements needed to represent the complex three-dimensional ventricular geometry. A 
rectangular Cartesian coordinate system, however, was employed for tissue 
mechanics analysis. The ellipsoid consisted of 16 finite elements which included 4 
circumferential elements, 4 longitudinal elements and 1 transmural element (Fig. 4). 
A material coordinate system was also defined such that it was attached to material 
points and moved with the myocardium as it deformed. Finite element material 
coordinates (�1,�2,�3) were directly associated with element geometry, with �1 in the 
circumferential direction, �2 in the transmural direction, and �3 in the longitudinal 
(apex-base) direction. The spatial variation of geometric information within each 
element was approximated using tri-cubic Hermite interpolation of parameters 
defined at the element nodes, which implicitly enforces spatial gradient continuity 
across element boundaries [12]. The nodal parameters obtained after minimization 
constituted the optimized geometric model. 

   
      (a)       (b)            (c) 

Fig. 7. (a) A regular ellipsoid created as the initial estimate of the LV geometric model where x: 
base-to-apex, y: left-to-right, and z: anterior-to-posterior. (b) Epicardial surface of the initial 
ellipsoid fitted to the short axis epicardial contour. (c) Endocardial surface of the initial 
ellipsoid fitted to the short axis endocardial contour. The root mean squared error in the surface 
fit was 0.8 mm.  

The LV fiber architecture can be defined throughout the LV geometry using 
nonlinear optimization of a fiber field to the transformed fiber vectors derived from 
DTMRI, using the methods outlined in [7]. 
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4.2  Left Ventricular Mechanics  

LV pressures were sampled at each MR time frame as illustrated in Fig. 8. Given the 
boundary conditions from the LV pressure, the finite deformation elasticity problem 
can be solved using the method outlined in [13]. The mechanical properties and active 
parameters can be tuned such that deformation predictions reliably match the 
observed displacements of material points derived from the tagged MRI data [7]. In 
this way we can then gain insight into regional distributions of myocardial stress and 
thus functional measures such as local energy consumption. 
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Fig. 8. LV pressure over one cardiac cycle (dashed line), with spikes indicating the timing of 
the MR imaging. 

5  Conclusions 

We have extended previous finite element based modelling methods to the 
characterization of cardiac structure and function from in vivo canine MRI tissue 
tagging and pressure data, and ex vivo DTMRI derived microstructural information. 
Due to the different orientation of the MR tagged images and the DTMRI images, 
image resampling was performed to obtain DTMRI images which closely correspond 
to the MR tagged images.  In order to incorporate the myocardial fibre orientation 
data from the DTMRI images, fiducial markers were selected on the MR tagged 
images and the resampled DTMRI images for host mesh fitting.  This method 
enables integration of data from different acquisitions into a coherent model of 
structure and function. In the future these methods will facilitate characterization of 
biophysical parameters from cardiac MR data. 
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Abstract. This paper presents a meshless framework to compute strain
in the left ventricle from Tagged MRI. Our meshless framework allows
the computation of a complex but smooth strain field, since it is not
bounded to the underlying mesh structure of a model. In this paper,
we used Tagged MR images of left ventricles. However, the suggested
formulation is independent of the image modality and the choice of fitting
mechanism.

1 Introduction

A meshless method to solve partial differential equations was introduced in com-
putational mechanics by [1] according to [2], although the meshless method itself
was introduced in the 70’s [3]. Despite their great flexibility, meshless methods
have not been utilized significantly in the medical field. Recently the meshless
approach was utilized to model surgical processes [4, 5]. Meshless approaches
are well suited to model a biomedical organ in surgical simulations, when the
topology of the organ changes interactively by surgical processes such as cut-
ting and stitching. The fundamental flexibility of the meshless approach lies in
the following : 1) a field is defined by the not-explicitly-connected participating
particles, 2) we can change the density of the constitutive particle populations
without changing the field property, and 3) any changes in such constitutive par-
ticles can be handled locally. Since a meshless approach has such flexibility, it is
appropriate for strain computations, in areas where we observe drastic changes
in deformation patterns.

The left ventricle (LV) exhibits large deformations during the cardiac cycle
[2],and has a very complex geometry with varying material properties in the en-
docardium [6]. Galerkin approaches on discretized domains, such as like Finite
Element Methods (FEM) or Boundary Element Methods (BEM), have been used
in numerous studies of strain analysis of LV deformations, including [7–12]. How-
ever, when we compute strains during the LV deformation, spatially discretized
elements like the ones used in FEM or BEM could be too coarse to encompass all
the details of the strain field. Furthermore, increasing the number of volumetric
elements to express all the details could be computationally expensive, and more
importantly erroneous, since it could produce too many degenerate volumetric
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elements during a simulation. Having such irregularly shaped elements could un-
dermine the stability of simulations. Hence we introduce a meshless formulation
to compute the strain field for LV during systole.

In Sec. 2, we introduce our meshless strain formulation method, and in Sec.
3, the methodology for fitting is explained. Sec. 4 shows the experimental results
tested on two slices of the in-vivo myocardium, and a discussion with future
directions follows in Sec. 5.

2 Meshless Strain Computation

In order to measure the deformation of the LV, strain fields of the LV have
been analyzed by many researchers. In this paper, we measure the strain field
using the meshless method. In the meshless method, an object is represented
by points only. All points are not explicitly connected. The strain tensor of a
point is computed based on the neighboring points. Obtained strain fields will
be smooth because all the strain tensors are based on their neighbors. Among
several ways to compute strain [13], we use the lagrangian strain tensor since it
is more suitable for large deformations and reports deformations with respect to
the original shape of an object.

2.1 Strain Computation for Large deformations

Given the initial position of a point x0 = (x, y, z) in a global coordinate system
and the displacement u(t) = (ux, uy, uz) at time t, the current position of the
point is x(t) = x0+u(t). The deformation gradient J is defined as J = δx(t)/δx0.

J = δ(x0 + u(t))/δx0 =

⎡
⎣1 + ux,x ux,y ux,z
uy,x 1 + uy,y uy,z
uz,x uz,y 1 + uz,z

⎤
⎦ = I + ∇UT (1)

Given the deformation gradient J , the lagrangian strain tensor ε is computed
as

ε =
1
2
(JTJ − I) (2)

In our strain formulation, a point is not a member of any spatial elements.
Since a point does not have any element to which the point belongs, the straight
forward strain computation method in FEM can not be used. Instead a method
which approximates the strain tensor of a point in the relation to its neighboring
points has to be used.

2.2 Approximating ∇U

To compute the strain tensor of a point, an approximation method based on the
relation to its neighboring points has been adopted. In this paper, we adopt an
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Fig. 1. The strain of a point xi is computed based on the relation with the neighboring
points xj .

approximation method to compute the strain tensor of a point using the meshless
Galerkin’s approach [14]. The density of a mass centered at a point is weighted
based on smoothed particle hydrodynamics (SPH). The set of neighboring points
as shown in Fig. 1 is determined at the initial reference shape of an organ (not
necessarily the least deformed shape). We determine the neighboring radius h =
3R where R is the average distance of the closest point pairs in all points. The
weight function w(i, x) originating from xi is normalized as

∫
x
w(i, x)dx = 1.

Using the moving least squares formulation method [15], without loss of the
generality, the x component of the displacement gradient ∇U at the node i is
computed as

∇ux|xi = A−1(
∑
j

(ux(j) − ux(i))xijw(i, j)), (3)

where xij = xi − xj , ux(j) is the x component of the displacement u at
the node j in the vicinity of the node i, and the momentum matrix A =∑

j xijx
T
ijw(i, j). Refer [16] for the detailed derivation of Δux. The other y

and z components of ΔU can be computed similarly. Once we have ∇U , we
can compute the strain tensor from Eq. 2. Given a 3x3 strain tensor, principal
strain analysis is performed. Principal strain analysis is used to find eigenvalues
and eigenvectors of a tensor to eliminate shearing components. Positive/negative
eigenvalues of principal strains represent elongations/contraction deformations,
respectively, while the corresponding eigenvectors represent the direction of de-
formations.

Computation: Using Tagged MR images of LVs, we first fit a 3D LV mesh
to the image data, based on the technique explained in Sec. 3. From the fitted
model to each frame, we compute the strain field of the LV with respect to
the reference shape. For an area of interest, to compute a more detailed strain
field, we increase the number of points scattered, without remeshing the original
mesh used for fitting. The points used for meshless strain computations are

Meshless Methods for LV Strain Computations from Tagged MRI
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defined based on their barycentric coordinates with respect to the underlying
mesh structure. Thus more points can be added for strain estimation after the
fitting.

2.3 Comparison with FEM

Fig. 2. From the reference shape shown at the top, all the elements surrounded by
(X) points have elongated, while the elements adjacent to the center point have not
deformed because of a fitting error. The strain field computed using FEM approaches
will illustrate zero strain fields around the center point. A meshless strain approach
will compute a smooth strain field as shown in the right picture, since the strain in
meshless methods is computed based on neighboring points. In this example, the grey
scale has been used to visualize the density of

∑ |εi| for all eigenvalues εi of principal
strains.

In FEM, any error in fitting could result in errors in strain computations
directly. In Fig. 2, consider the case where the four elements neighboring the
blue node have not deformed at all since they failed to fit to the image data
while the other elements with the green nodes have fitted to the image data. In
FEM, the strain computed in the blue node will be zero (actually, a zero tensor).
Any failures of fitting directly affect the strain analysis of that area.
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In meshless formulation, this adverse effect of a fitting failure can be mini-
mized, provided the vicinity of the center node includes more neighboring nodes
other than (x) marked nodes, since the strain field is computed in conjunction
with all its neighboring nodes (Extended kernel). Although the volume defined
by the (x) marked nodes and the center node have not deformed at all, the strain
field on the center node still could be a smooth tensor as it is influenced by other
green nodes. Hence a small fitting error does not affect the strain analysis di-
rectly. For the case, where we actually expect a small scale of deformations, we
can populate the area with more nodes with a smaller vicinity threshold to cap-
ture small details. Expanding the kernel size of the meshless approach excessively
will smoothen the strain field unnecessarily. Picking the appropriate kernel size
for each application is essential to maintain the correctness of the system.

3 LV Fitting

Fig. 3. A fitted generic heart model

In this paper, we used Tagged MR images to estimate LV movements. We fit
a 3D generic heart mesh, based on the approach used in [17]. First, we obtain
contours and tagging line information from tagged MRI using Gabor Filters [18],
Metamorphs [19] and spline model [20]. The intersections of the three tagging
planes are calculated, as well as the intersections of the LV boundary and the
tagging planes. These intersections can be used as material markers in LV motion
tracking. Then we register a generic heart mesh to the image data by affine
registration and non-rigid thin plate spline local fitting. We build a Delaunay
tessellation on intersection points and interpolate the image forces onto the mesh
points by FEM. FEM dynamics is used to reconstruct the LV motion while
preserving the topology and shape of the model. The fitted image is shown in
Fig. 3, about 6K elements have been used.

Meshless Methods for LV Strain Computations from Tagged MRI

19



Fig. 4. The strain field from a slice in the middle of LV, visualized in different eigen-
vectors. The middle slice is shown in the left most picture. The strain elements of
interest are visualized in 3D and the images are taken from the top view. Circumfer-
ential Strain(Contraction): The upper pictures show the contraction deformation of
the LV. Each edge represents the eigenvector corresponding to the negative eigenvalue
of the principal strains. The length of each eigenvector is determined by its eigen-
value. Radial Strain(Elongation): Lower Pictures show the elongation deformation
of LV. Each edge represents the eigenvector corresponding to the largest positive eigen-
value of the principal strains, whose length is determined by its eigenvalue. Increased
Points:In both type of deformations, the right pictures show results with more popu-
lated point cloud.

Fig. 5. All the eigenvalues from ten subjects were plotted with respect to the points
used in the meshless method. Left(Elongation): The largest positive eigenvalues.
Center(Contraction): The largest magnitude least negative eigenvalues. Right: The
third principal (smallest magnitude) eigenvalues.
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4 Results

We used ten normal subjects to measure the strain field. After fitting the heart
model to Tagged MR images, the strain field is computed using our meshless ap-
proach. We visualize the results of the principal strain analysis with the strain
tensors based on the sign of eigenvalues. It is very natural to separately ana-
lyze elongation and contraction deformations, since it gives us more information
of LV movements. The largest positive eigenvalues, which mostly represent the
transmural thickening (radial elongation) deformation, are shown in the lower
two pictures in Fig. 4. The pictures of the largest magnitude of negative eigenval-
ues represent in general circumferential contractions in myocardium. The data
of the eigenvalues are shown in Fig 5. The average of both largest positive and
negative eigenvalues were around 0.3 in their magnitude, while the average of the
smallest eigenvalues was close to zero. 0.3196, -0.3134, and 0.0487 were the aver-
age of the positive, negative, and smallest eigenvalues respectively. This means
that during systole the overall volume of the LV wall is approximately preserved.
In Fig. 6, the strain field shows the contraction (negative eigenvalues) along the
muscle direction. As shown, the results are a lot more smoother compared to
an FEM approach which would be significantly more computationally expensive
and would be not possible to guarantee second order smoothness in the strains
across elements.

Fig. 6. Contractions in side view

The smoothness effect of using meshless formulation, as discussed in Sec. 2.3,
is tested using the Frobenius norm

√
Σn
i=0Σ

n
j=0D

2
ij where Dij = EA

ij − EB
ij for

the strain fields EA
ij and EB

ij of the nodes A and B, repectively. When the strain
field is smoother, we have a smaller Frobenius norm. Fig. 7 shows strain fields
become smoother as the kernel sizes increase. The Frobenius norm of the strain
field using FEM was 0.086 while the one of the smallest kernel size of 2.25 ravg
was 0.061. This shows the smoothing effect of the meshless approach.
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(a) 3 ravg (b) 4.5ravg (c) 6 ravg (d)

Fig. 7. The x axis in smoothness is the multiples of the average r of 10 nearest neigh-
bors. (a),(b) and (c) shows the contracting strain computed with the kernel size 3 ravg,
4.5 ravg and 6 ravg respectively. All three are taken near the middle ventricle, where
ravg is the average distance of all closest node pairs. (d) plots the Frobenius norms of
the different kernel sizes.

5 Discussion

In this paper, we introduced a meshless formulation to compute the strain field of
the LV. We have introduced a new meshless framework to model accurately the
LV strain. Using this framework we have shown more accurate and smoother re-
sults than traditional FEM methods. Our meshless framework for strain analysis
is versatile, so it can be used for other organs.
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Abstract. In this paper, we propose a framework for generating de-
formable models for catheterisation training applications. Through ex-
ploiting centreline extraction, graph reconstruction, curve fitting and
curve framing techniques, we can model vascular structures and other
virtual catheterisation devices using mathematically contrived geome-
tries with minimal user interactions. A Physics Processing Unit (PPU)
based incremental voigt model has been proposed for incorporating non-
linear biomechanical/mechanical properties into the deformable models.
Experiments have shown a reasonable increase in frame rates from 2-fold
to 4-fold over non-PPU-based simulations. Our results have demonstated
the feasility of using this newly evolved multi-core physics accelerator
for speeding up medical training applications such as virtual vascular
catheterisation.

1 Introduction

Catheterisation has been one of the major medical procedures being used in vas-
cular interventional radiology for the remedy of stenosis, aneurysm, etc. Based on
image-guided X-ray fluoroscopy or ultrasonography, a thin flexible tube called
catheter is inserted into a vessel for vascular procedures such as angiography,
angioplasty and embolization. Due to the limited visual perception during the
image-guided procedures, training of these procedures is difficult. Recently, vir-
tual reality (VR) based medical simulations have become more popular due to
their reusability and flexibility.

Within a virtual simulation environment for vascular intervention procedures,
virtual devices such as guide wires or catheters can often be interacted with each
other. Thus, effective collision computation between various deformable models
is an essential task. Currently, real-time simulation of deformable models in
medical simulation remains a challenging task. Futhermore, visualizations of
these procedrues that are of high quality and high fidelity demands even more
intensive computation.

24



2

In this paper, a novel deformable modeling framework for virtual catheteri-
sation is proposed. The new personal computer (PC) grade, multicore processor
called the Physics Processing Unit (PPU) has been exploited in developing our
framework for reconstructing deformable models suitable for interactive medical
simulations. Vascular structure and virtual devices can be built through an au-
tomated topological geometric modeling engine. PPU provides built-in support
of a mass-spring-damper model for describing linear elastic motions. We extend
the model to an incremental-voigt one for simulating the non-linear biomechan-
ical stress-strain behaviour of soft tissue. With such an hardware-acceleration,
real-time interactivity can be achieved.

2 Related Work

VR based medical simulations for minimally invasive surgery (MIS) has become
more prevalent in the recent decade. Virtual endoscopy has been exploited to
simulate colonscopy [8], arthroscopy [6], laparoscopy [3] and hysterscopy [5] etc.
Developing simulation systems for vascular interventional procedures have been
a very active research area [7][2][14]. Many existing works focus on the geometric
modeling of vascular structure for catheter navigation. Nowinski et al. proposed
a virtual environment for simulating deformable vascular modeling [11], where
by assuming a static external vessel wall structure, interactive performance can
be achieved. In order to further enhance the realism of the simulation, a more
flexible deformable modeling for vascular structure is needed. In light of this, we
propose the PPU-based framework for modeling and simulating realistic biome-
chanical features of the vascular system so that deformable models can be used
for virtual catheterisation.

3 Modeling Framework

In catheterisation procedures, guide wire or catheter is directed to the region
of interest through blood vessels. Simulated vessel models, and virtual devices
constitute the basic components of a virtual catheterisation simulation. Based
on angiographic data such as magnetic resonance angiography (MRA) or com-
puted tomographic angiography (CTA), centrelines or namely skeletons of the
interested vessels are extracted. An automated topological reconstruction pro-
cess is carried out in order to build a geometric model of the vessel. Virtual
devices such as guide wires or catheters can also be built through the modeling
framework.

3.1 Skeleton Extraction

The extraction of a vascular skeleton can be done by a two pass procedure. First,
a thinning process is performed to locate the skeleton voxels, which represent the
abstract vessel information, within a 3D volume of angiographic data. We adopt
a fully automatic centerline calculation algorithm based on a 3D topological
thinning proposed in [15]. Then a vessel graph can be constructed.

PPU-based deformable models for Catheterisation training
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3.2 Vessel Graph Construction

Based on the extracted skeleton points, a graph is constructed for later topo-
logical reconstruction process. We can consider the structure of the blood vessel
as a directed graph. An adjacency list is deployed for such representation where
centerline points are restored in a linked link. A junction is represented as a
vertex which has several edges linking to others. The rest of the vertices are re-
garded as segment points. Adjacent points with no junction should be arranged
sequentially, the line ends when a junction or end point is found.

Only a subset of a given set of points in a vessel graph are used in the mod-
eling. We select feature points based on the local curvature along the skeleton
curve. For the initial n segment points p0, p1 · · · , pn−1, with the approximated
local curvature defined as ||p′′i ||, a feature point will be selected if the condi-
tion ||p′′i || > ξ is satisfied, where ξ denotes the curvature threshold (Fig. 1(a))
Eventually, m feature points si (i = 0, · · · ,m − 1) are selected. Then, a num-
ber of curve segments are fitted onto selected feature skeleton points. Feature
points are exploited as the end point of individual Bézier segments. Extra con-
trol points are computed through colinearize local end point tangents between
adjacent segments. In this sense, a C1 continous curve can be guaranteed.

3.3 Vessel Frames

From a particular volume data set containing the vessel information, such as
one from MRA or CTA, the surface may be obtained through marching cubes or
skeleton climbing [13]. However, the irregular mesh structure generated is usu-
ally not suitable for the reconstruction of computationally efficient deformable
models. We propose a re-framing process so that the surface mesh can be re-
parameterized into a more regular grid structure. The whole process undergoes
several major steps: tubular segment creation, bifurcate creation, parallel trans-
port framing and tetrahedral grid reconstruction.
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(a) (b) (c)

Fig. 1. (a) Feature point selection (b) The Frenet frame on tubular structure (C)
Surface swept from the frames.

Tubular Segment Reconstruction Frenet-Serret frames are used to thicken
or namely frame the tubular and bifurcate skeleton. For one particular Bézier
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segment Zi(t) t ∈ [0, 1] (Fig. 1(b)), the unit tangent Ti(t), unit normal Ni(t)
and unit bi-normal Bi(t) are given by:

Ti(t) =
Z′
i(t)

||Z′
i(t)||

, Bi(t) =
Z′
i(t)× Z′′

i (t)

||Z′
i(t)× Z′′

i (t)|| , and Ni(t) = Bi(t)× Ti(t), t ∈ [0, 1]

One common problem occuring in Frenet framing is that in some cases, the
binormal is not varying smoothly or well-defined at a singular point, e.g. when
the curve is locally straight. We adopt a correction method which deploys a
modified version of parallel transport [1] to tackle these singularities. The main
purpose of parallel transport is to ensure one particular reference frame (a set of
tangent T , normal N and binormal B) is transported as parallel to the previous
frame as possible. This method can resolve singularities regardless of the local
curvature throughout the curve. A numerial method for computing the frame
is used. For two consecutive tangents, the axis perpendicular to both of them
is used as the rotation axis. In this sense, the frame fi+1 can be computed by
rotating the previous frame fi by the angle between the two tangents.

After all frames have been computed and corrected, we can generate a series
of rings for final surface sweeping:

Fi(t, θ) = Bi(t) + r(t)(cosθNi(t) + sinθBi(t)), t ∈ [0, 1], θ ∈ [0, 2π],

where r(t) denotes the radius of the tubular or bifurcate frame. r(t) can be
determined from the original patient data. Fig. 1(c) shows the resultant surface-
swept curve.

Bifurcation Reconstruction Bifurcation framing has to be handled sepa-
rately. First, we reconstruct three Bézier segments based on the bifurcate point,
C0, and the radius of three tubular segments r1, r2, and r3, respectively. The
segment end points and the internal control points can be calculated by:

C11 = C0 + r1/2, C12 = C0 + r1;

C21 = C0 + r2/2, C22 = C0 + r2;

C31 = C0 + r3/2, C32 = C0 + r3;

Fig. 2 shows the creation of three bifurcate Bézier segments based on the bifur-
cate point. Then, the thickening of these segments can be done by sweeping three
half tubular surfaces and re-triangulating the inner Bézier triangle. Figs. 3(a)
shows an example of tubular grid structure. Fig. 3(b) shows a composite struc-
ture.

Tetrahedral Model Based on the geometric model, a dual-layered tetrahedral
mass-spring model can be built. The outer layer is the grid-based surface mesh.
The inner layer is generated by shooting rays from the centroid of every triangle
(of vertices vij , where j = 0, 1, 2) towards its facet normal Ni until the layer
depth has been reached. One bottom vertex is corresponding to one upper trian-
gle. The position of this bottom vertex bi can be given by bi = vi0+vi1+vi2

3 +Nil,
where l denotes the layer depth. We can then attach each triangle vertex to

PPU-based deformable models for Catheterisation training
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Fig. 2. Geometric model of the bifurcation grid

(a) (b)

Fig. 3. Geometric model of the vascular model (a) the tubular structure, (b) a com-
posite grid structure with both tubular segment and bifurcation.

the bottom vertex through three springs, i.e. vi0 → bi, vi1 → bi, and vi2 → bi.
Fig. 4(a) demonstrates how the tetrahedral grid is reconstructed. A tetrahedral
mesh structure can thus be built between the two layers of surface through spring
connections. Triangulation is then carried out on these projected centroids to
form a triangualar mesh in the inner layer. Fig. 4 shows the layered deformable
model for various different structures. The resultant tetrahedral grid structure
is shown in Fig. 4(b) & (c). It is obvious that the same modeling mechanism
applies to the reconstruction of the virtual devices. In our catheterisation simu-
lation application, the virtual guide wire is modeled by a single-layered structure
while the virtual catheter is modeled by a dual-layered structure.

3.4 PPU-based incremental-Voigt Model

To simulate a virutal catheterisation surgery in a realistic manner, efficient mod-
eing of soft tissue deformation and virtual device mechanics is essential. Among
various simulation tasks, soft tissue deformation and solid-solid interactions are
the most computationally intensive parts in a catheterisation simulator since
extensive physics computations are required. Although the currently available
PPU do not yet provide a finite element analysis (FEA) solver, it does provide
a built-in actor and effector mechanism for resolving solid mechanics, which can
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(a) (b) (c)

Fig. 4. Deformable model (a) layered construction of volumetric grid, (b) deformable
grid structure of bifurcation structure, and (c) a single-layered wire is inserted into the
bi-layer structured catheter.

be understood as a variation of mass-spring-damper implementation. This pro-
vides a convienient way for modeling linear solid mechancs. Most soft tissue,
including the vessel wall, exhibit a non-linear stress-strain biomechanicial be-
haviour [10][4][9]. To caputre this behaviour interactively, we extend the PPU
built-in model to an incremental-voigt model. In our model, two springs, each
with an attached damper, are connected in parallel so that a biphasic biome-
chanicial behaviour can be simulated.

As we are modeling the vessel tissue as a mass-spring system, data for the
biomechanical properties of vessel tissue serves, therefore, as a reference for the
behavior of the entire macroscopic mass-spring system, rather than the micro-
scopic elasticity of individual single springs. To determine the micro-properties,
we deploy our previously proposed optimization process [12] to compute the
macroscopic elasticity of the whole mass-spring system which conforms with
real tissue biomechanics.

4 Simulation and Discussion

The guiding of the catheter/wire is a relatively complex component of the real-
time simulation process since it involve interior interactions between the vessel
wall and catheter and on the exterior as well. The solid-solid interaction of
the vascular structure and catheter/ guidewire is resolved by the built-in PPU
collision detection mechanism. Various collision models have been adopted to
speed up the overall simulation performace. In order to increase the system
responsiveness, a dual-model approach has been adopted for handling collision
detection of the outer and inner layers. We apply a mesh-based collision model
for the inner layer structures while the collision model for the outer layer is based
on a chain of spheres.

The PPU-based implementation has been compared with pure CPU-based
implementation. Experiments are conducted on a Pentium 4 Dual Core 3.2HZ
PC equipped with NVIDIA GeForce 8800. The physics accelerator used is AGEIA
PhysXP1. Fig. 5 shows a comparison of the frame rate between the two imple-
mentations. Since the major physics computation is done on the effectors (i.e.
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Fig. 5. Quantitative comparison between different size of deformable models.

the damper attached springs), we mainly compare the frame-rate against the
total number of effectors being simulated. From the experimental results, we
can observe that the performance gain resulted from PPU-based acceleration
is significant. An increase in frame rates from 2-fold to 4-fold can be observed
over non-PPU-based simulations. Interactive frame rates can still be guaranteed
when the number of effectors is more than 10000.

The physics accelerator has been more prevalent in gaming industry in recent
years. However, relatively little research has been conducted in exploring whether
PPU is suitable for medical applications as well. In this work, we have tried to
exploit the new consumer-level physics processing unit to accelerate catheteri-
sation simulations. Preliminary results has demonstrated that PPU can greatly
improve the speed performance while satisfying the realism requirement. PPU-
based modules are found to be easily programmed and flexible for extension.
Although finite element analysis (FEA) solver is not yet found on available PPU
boards, the built-in actor and effector mechanisms in resolving solid mechanics
is efficient for simulating solid-solid interaction in surgical simulations.

Although PPU has been found to be effective in improving the real-time re-
sponsiveness of medical simulations, one interesting finding regarding the PPU-
based deformable model is that the frame rate drops dramatically when the
number of effectors increases to a certain level. Such a situation occurs regardless
whether the hardware-accelerated collision detection has been enabled or not.
One possible reason is that the current hardware still relies on the relatively
slow PCI bus, thus, the interactivity would be greatly affected once the max-
imum data transfer has been reached. Therefore, the next genaration physics
accelerator, which can be ported to higher throughput data bus e.g. AGP or
PCX, would be demanded for applications involving high-quality simulation en-
vironment. Despite these limitations, the acceleration being achieved in the col-
lision detection part is noteworthy. Once the programming capacability of the
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hardware-accelerated physics computation (may be in the form of an interface
to various numerical solvers) has become more flexible, the use of PPU in the
medical community shall be more widely accepted.

In conclusion, a new deformable modeling framework has been proposed for
the medical simulation of catheterisation procedures. The framework is inte-
grated with PPU so that interactive responsiveness can be achieved. Experi-
mental results have demonstated the robustness of our proposed geometric de-
formable vessel modeling framework. The next step of our work would be the
modeling of other vascular interventional devices such as stent, balloon for simu-
lation of angioplasty and stent implantation. In future work, we shall investigate
the possiblity of exploiting PPU to accelerate solid-fluid interaction. This would
be important for simulating blood-tissue interaction as well as blood-device in-
teraction within different catheterisation procedures.
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Abstract. We present an end-to-end system for updating 3D preope-
rative images in the presence of brain shift and successive resections. The
tissue discontinuities due to resections are handled via the eXtented Fi-
nite Element Method (XFEM), which has the appealing feature of han-
dle arbitrarily-shaped discontinuity without any remeshing. The main
novelty of the paper lies in the use of XFEM in 3D.

1 Introduction

The main goal of brain surgery is to remove as much as possible of lesional tis-
sues, while avoiding contacts with eloquent areas and white matter fiber tracts.
Surgery is planned on the basis of preoperative images of multiple modalities,
such as CT, sMRI, fMRI, PET, DTI, and is generally performed using an image-
guided navigation system that relates the 3D preoperative images to patient co-
ordinates. However, throughout surgery, the brain deforms, mostly as a result
of the leakage of the cerebrospinal fluid out of the skull cavity and of surgical
acts, such as retraction and resection. As surgery progresses, preoperative images
become progressively less representative of the brain, and navigation accuracy
decreases. One solution is to evaluate brain deformations from reduced-quality
intraoperative images acquired at several critical points during surgery, and to
update, i.e. to deform, all high-quality preoperative images using a nonrigid reg-
istration.

One category of nonrigid registration techniques uses physics-based models.
Prior to surgery, a biomechanical brain model specific to the patient is built
from preoperative images. The model consists of a 3D volume mesh and one
or more mechanical-behavior laws. A number of key anatomical landmarks are
extracted and tracked through successive intraoperative images. The biomechan-
ical model is deformed, generally based on the Finite Element Method (FEM),
in accordance with the displacement fields of these landmarks. The resulting
deformation is then used to update the preoperative images.

Most studies of brain deformation based on biomechanical models have focused
on the early stages of surgery, i.e. prior to any significant deformation and any
cut [1–4]. The reported accuracy for deformation prediction is about 1 voxel. The
situation becomes more complex when the surgeon performs cuts, retractions,
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or resections [1, 5, 6], the last two necessarily involving a cut. The main diffi-
culty associated with a cut is the discontinuity it implies in the tissue. Indeed,
FEM cannot handle such discontinuities directly and, consequently, FEM has
to be used in conjunction with mesh adaptation [7] or remeshing [8] techniques.
However, it is likely that current remeshers, mainly developed for mechanical
engineering applications, would not work properly on irregular objects such as
a brain (which is furthermore extracted from an image), especially in a auto-
matic mode. While human intervention may improve results, the time required
is significant and unpredictable, which makes it unsuitable for surgery where a
timely response is essential.

Besides FEM, other methods have also been employed in the medical field to
model tissue discontinuities, like the boundary element method (BEM) [9] and
meshless methods [10, 11]. We propose an approach based on the eXtended Fi-
nite Element Method (XFEM or X-FEM) [12]. This method allows the object
to be modeled by finite elements without explicitly meshing the discontinuities,
which can then be located arbitrary with respect to the underlying finite-element
mesh. Here, we describe, and report on the performance of, a 3D FEM- and
XFEM-based end-to-end system capable of updating preoperative images in the
presence of brain shift followed by successive resections [13]. The main novelty
is that the problem is treated in 3D.

The structure of the paper is as follows. In Sect. 2, we introduce the basic
principles of FEM and XFEM. In Sect. 3, we describe our preoperative image-
update system and underlying algorithms. In Sect. 4, we show our results for one
patient case, while, in Sect. 5, we validate our results. In Sect. 6, we conclude
and point out future work.

2 Basic principles of FEM and XFEM

We have to solve the static problem of finding the displacement field that corre-
sponds to the deformation of a solid (a brain in the present case), subjected to
external forces. With FEM, the solid is discretized into a mesh, i.e. into a set a
finite elements interconnected by nodes, and the displacement field is approxi-
mated by

uFEM (x) =
∑
iεI

ϕi(x)ui, (1)

where I is the set of nodes, the ϕi’s are the nodal shape functions (NSFs), and
the ui’s are nodal degrees of freedom (DOFs).

In Eq. (1), each NSF ϕi(x) is defined as being continuous over each FE, im-
plying the same property for the displacement field uFEM (x). Furthermore, the
displacement ui at any node can only take a single value. Consequently, the
handling of a discontinuity with FEM requires one to align the discontinuity
with element boundaries and to duplicate the nodes lying on these boundaries.
These operations can be performed by mesh adaptation or remeshing.

XFEM [12, 14] handles a discontinuity by allowing the displacement field to
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be discontinuous within mesh elements. Arbitrarily-shaped discontinuities can
then be modeled without any remeshing. The XFEM displacement field is ap-
proximated by generalizing the FEM displacement field (1) with

uXFEM (x) =
∑
iεI

ϕi(x)ui +
∑
iεJ

ϕi(x)
nEi∑
j=1

gj(x)aji. (2)

The first term corresponds to the FEM displacement field approximation (1),
where I is the set of nodes, the ϕi(x)’s the FEM NSFs, and the ui’s the nodal
FEM DOFs. The key of XFEM is the “enrichment” that adds a number, nEi ,
of DOFs aji to each node i of set J , which is the subset of nodes of I whose
support is intersected by the discontinuity. These DOFs are multiplied by the
NSFs ϕi(x) and the discontinuous functions gj(x). The simplest choice for the
gj(x)’s is a piecewise-constant function that changes sign at the discontinuity,
i.e. the Heaviside function

H(x) =
{

1 for (x− x∗).en > 0
−1 for (x− x∗).en < 0, (3)

where x is a point of the solid, x∗ is the point on the discontinuity that is the
closest to x, and en is the outward normal to the discontinuity at x∗.

Figure 1 illustrates the use of 2D XFEM for a mesh cut horizontally, with each
part being subjected to a distinct translation. This example shows that the two
parts of the mesh can move independently without one having to remesh the
object along the discontinuity.

(a) (b)

Fig. 1. Example of 2D XFEM calculation. (a) FE mesh and discontinuity geometries
prior to deformation. (b) Deformation results provided by XFEM when top and bottom
parts are subjected to distinct translations.

3 Methods
The inputs are (1) a set of multimodality preoperative images and (2) a sequence
of intraoperative MR (iMR) T1 images, acquired with a 0.5 Tesla intraopera-
tive GE Signa scanner5. The protocol of iMR acquisition is defined such that
the 1st iMR image is acquired prior to the opening of the skull. Before surgery,
a patient-specific biomechanical model is built from the set of preoperative im-
ages. Once the 1st iMR image is acquired, the set of preoperative images and the
biomechanical model are brought into the intraoperative coordinate system by
a rigid registration. Without any loss of generality, we deal with the problem of
updating the 1st iMR image, which thus plays the role of a fictive preoperative
5 iMR image size is 256× 256× 60 voxels; voxel size is 0.9375× 0.9375× 2.5 mm.
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image. Except for the rigid registration between the preoperative images, the
biomechanical model, and the 1st iMR image, all key aspects of the system can
be discussed and illustrated.

To build the biomechanical model, we proceed as follows. From the 1st iMR
image (once again, as a substitute for true preoperative images), we manually
segment out the cortex and the tumor using 3D Slicer

6, and smooth both re-
gions. Then, we mesh the cortex surface with triangles using Isosurf

7. Besides,
we define a set of points lying on the tumor boundary. Based on the cortex
triangular mesh surface and this set of points, we mesh the cortex volume with
tetrahedra using Tetgen

8. We do not create a surface mesh of the tumor bound-
ary because Tetgen cannot handle internal surfaces. Finally, we assign to this
mesh a homogeneous linear elastic (E = 7kPa, ν = 0.45)9 behavior law.

To drive the deformation of the biomechanical model, we track the surface de-
formation of the cortex and tumor through successive pairs of iMR images. For
this purpose, we segment out the cortex and tumor from each iMR image using
3D Slicer and smooth both regions. The matching of corresponding surfaces is
performed with an active surface algorithm [1]. The resulting surface displace-
ments fields are applied to the biomechanical model, and its deformations are
computed using FEM or XFEM, depending upon the type of circumstances, e.g.
brain shift or resection. We developed our FEM and XFEM codes within the
software Metafor

10. For each (X)FEM computation, we assume a zero initial
stress. We perform FEM computations in a nonlinear formulation (large defor-
mations) because this has been shown to provide better results than in a linear
formulation (small deformations) [15], and to reduce the problem of element
flipping. By contrast, we perform XFEM computations in a linear formulation,
because a XFEM nonlinear formulation is not yet available. The set of preoper-
ative images (the 1st iMR image in our case) are deformed, i.e. warped, based
on the volume displacement field of the biomechanical model. We use VTK

11

and ITK
12 for all image processing.

4 Results

The top row of Fig. 3 shows a sequence of five iMR images. The 1st image was
acquired prior to the opening of the skull. The 2nd image was acquired after
the opening of the skull and dura, and shows some brain shift. The 3rd and
4th images were acquired after each of two successive resections. The 5th image
was acquired at the end of the surgery after the 3rd resection, and shows some

6 www.slicer.org/
7 http://mi.eng.cam.ac.uk/ gmt11/software/isosurf/isosurf.html
8 http://tetgen.berlios.de/
9 Experiments show that our current implementation appear sensitive to the values of

the parameters, in particular that of E: some values of E have indeed been observed
to cause element flipping.

10 http://garfield.ltas.ulg.ac.be/oo meta/
11 www.vtk.org
12 www.itk.org
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(a) (b)

Fig. 2. (a) Initial active surface with color levels corresponding to the magnitude of
the final displacements. The location of the brain shift is clearly visible. (Discussed in
Sect. 4.1.) (b) Deformed mesh resulting from the XFEM-based modeling of the 2nd

resection. (Discussed in Sect. 4.3.)

postoperative brain shift. The modeling of brain shift, 1st, 2nd, and 3rd resection
are performed using different techniques, as detailed below.

4.1 Modeling of brain shift via FEM

To model brain shift, we estimate the surface displacement field of the cortex
and tumor, and use them to deform the biomechanical model. For the cortex, the
initial active surface corresponds to the surface of the biomechanical model. Once
the result of the active surface algorithm is obtained (Fig. 2a), the displacements
of the active surface nodes are directly applied to the cortex nodes. For the
tumor, the displacements are applied differently because the tumor is not defined
by a surface mesh. An active surface computation is performed on the healthy
brain (defined as the whole brain minus the tumor). Then, we apply, to the
nodes of the volume mesh located along the tumor boundary, displacements
extrapolated from the surface displacement field of the active surface along the
tumor boundary. In the present case, no tissue discontinuity is involved, so the
volume deformation is computed via FEM. The resulting volume displacement
field is used to warp the whole brain image extracted from the 1st iMR image.
The result is shown in Fig. 3.2b.

4.2 Modeling of 1st resection via FEM

Matching two surfaces to get a displacement field makes sense only if the sur-
faces correspond to the same physical entity. In the case of resection, we cannot
rely on the totality of the cortex surface, since a part of it is now missing. Con-
sequently, we evaluate the displacement field for the combined surfaces of the
intact cortex and of the tumor, which effectively constitutes the boundary sur-
face of the healthy brain.

Based on the 2nd and 3rd iMR images, we cannot determine the volume and
location of the tissue removed by the resection. This is because the 3rd iMR im-
age shows the combined effect of tissue removal and subsequent deformation. In
fact, because the 2nd and 3rd iMR images do not show the same volume of brain
tissue, the problem of modeling resection and brain shift is fundamentally dif-
ferent. Nevertheless, we decided to model the 1st resection by still relying on the
displacement fields of key surfaces, here the healthy-brain boundary, to deform
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the biomechanical model. This indeed appears to be the only reliable informa-
tion concerning the deformation due to resection that we can extract from the
2nd and 3rd iMR images. Consequently, we do not model explicitly the removal
of tissue, but we model directly the deformation resulting from it, without intro-
ducing any tissue discontinuity. Using the displacement field of the healthy brain
boundary, we compute the deformation of the biomechanical model via FEM.
Then, using the resulting volume displacement field, we warp the fictive preoper-
ative image in its current state of update (Fig. 3.2b), in the same way as for brain
shift. The resulting image is shown in Fig. 3.3b, which is now registered to the
3rd iMR image (Fig. 3.3a), except outside of the healthy-brain boundary, i.e. for
the tumor. Finally, we alter the resulting image to reflect the effect of resection.
For this, we assign the background color to the voxels of Fig. 3.3b corresponding
to the resected tissue volume “absent” in the 3rd iMR image (Fig. 3.3a). The
result of the warping with resection, performed by masking the warped image
(Fig. 3.3b) with the segmentation of the whole brain from the 3rd iMR image
(Fig. 3.3a), is shown in Fig. 3.3c.

4.3 Modeling of 2nd resection via XFEM

The significant feature of the 2nd resection is that some tissue has already been
removed by the 1st resection, which means that this tissue cannot have any
physical influence on subsequent brain deformations because it does not “exist”
anymore. Consequently, the 1st resection must be reflected in the biomechanical
model. Recall that, to model the 1st resection, the biomechanical model has been
deformed to be registered to the 3rd iMR image. So, using the 3rd iMR image,
we can define the boundary of the 1st resection, i.e. the tissue discontinuity to
include in the biomechanical model. With a FEM-based biomechanical model,
we would remesh the model to take into account the discontinuity. Then, we
would just remove the part of the mesh corresponding to the resected tissue,
and use the other part of the mesh to model the 2nd resection. Instead, with
XFEM, we enrich the nodes whose support is intersected by the discontinuity
with XFEM Heaviside DOFs. Consequently, when the XFEM-based biomechan-
ical model deforms, the part corresponding to tissue removed by the 1st resection
has no influence on the deformation of the remaining part of the brain.

Except for the fact the biomechanical model is deformed with XFEM rather
than FEM, the modeling of 2nd resection is identical to that of the 1st resec-
tion. The biomechanical model is deformed in accordance with the displacement
field of the healthy-brain boundary evaluated from the 3rd and 4th iMR images.
Fig. 2b shows the deformed mesh, result of the XFEM computation. The bot-
tom part of the mesh, representing the tissue remaining after the 1st resection,
was deformed according to the displacement field of the healthy brain boundary,
while the top part, representing the tissue removed by the 1st resection, was
subjected to a translation, but only for visualization purposes. The two parts of
the mesh could indeed overlap around the discontinuity after deformation of the
bottom part. Using the XFEM volume displacement field, we warp the fictive
preoperative image in is current state of update (Fig. 3.3b). The resulting image
is shown in Fig. 3.4b, while the result of the warping with resection, performed
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by masking Fig. 3.4b with the segmentation of the whole brain from the 4th iMR
image (Fig. 3.4a), is shown in Fig. 3.4c.

4.4 Modeling of 3rd resection via XFEM

If we had complete freedom, we would model the 3rd resection and postoperative
brain shift based on the bottom part of the output mesh of the 2nd resection
modeling (Fig. 2b). However, even though the mesh is displayed as two separate
parts, it is, in fact, a single entity. Indeed, a main feature of XFEM is to be
able to handle the effect of a discontinuity without modifying the underlying
mesh, i.e. without remeshing. For modeling the 2nd resection, the edges of ele-
ments straddling the discontinuity have been “cut” and their nodes moved apart.
However, it is not possible to start an XFEM calculation with a mesh already
deformed because the finite elements are not supposed to be already cut. Conse-
quently, XFEM, expressed in linear formulation, does not permit us to proceed
with a new discontinuity from a configuration already deformed by XFEM. In-
deed, we should use a nonlinear formulation of XFEM [16] to proceed as desired.

For temporarily avoiding going nonlinear, we devised a new method that con-
tinues to preserve the spirit of XFEM, which is mainly to avoid remeshing in
the presence of a discontinuity. However, this method implies additional process-
ing. The idea of our method is “to reconnect the pieces” of the deformed mesh
(Fig. 2b), but without remeshing, in such a way we can further resect it. Since we
already have the correct deformed coordinates for the bottom part of the mesh,
we need to find a way “to restore” a meaningful top part. We cannot simply
lower the top part of the mesh, because it would not fit the bottom part. Indeed,
the bottom part has been deformed during the modeling of the 2nd resection,
with consequence that the discontinuity surface of the bottom part has changed
shape. While this might not be the best from a computational standpoint, our
current solution is to use, for the coordinates of the nodes of the top part of
the mesh, the coordinates that we would had got if we had modeled the 2nd

resection based on FEM, rather than on XFEM, i.e. without taking into account
the removal of tissue by the 1st resection. These coordinates are erroneous, but
this is not an issue, since these nodes will again be resected, given that the 3rd

resection is necessarily deeper than the 2nd resection. We must be careful to en-
sure that the restored elements have good aspect-ratios. FEM is a way to achieve
this, although there is no guarantee that good results will be obtained for the
composite elements straddling the discontinuity.

After the reconnection of the mesh, the modeling of the 3rd resection is identical
to that of the 2nd resection. The tissue discontinuity due to the 2nd resection is
defined from the 4th iMR image, and used to enrich the nodes of the reconnected
mesh. The biomechanical model is deformed based on XFEM in accordance with
the displacement field of the healthy-brain boundary computed from the 4th and
5th iMR images. One significant feature of the procedure described for modeling
the 3rd resection, i.e. mesh reconnection followed by model deformation, is that
it can be applied iteratively for each subsequent resection visible on successive
iMR images, no matter how many there are.
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Fig. 3. (1st row) Sequence of five input iMR images. (1a) is used as a fictive preopera-
tive MR image. (2nd and 3rd rows) Results of the warping of the fictive preoperative
image. Details are in text.

For this patient case, a simplification for the modeling of the 3rd resection can
be made because, by the time the 5th iMR image is acquired, the resection
is complete. This means that we actually only need to compute the volume
displacement field of the healthy brain tissue. Since we applied displacements
exactly to the external surface of the healthy brain volume, the results would
be the same with FEM and XFEM. Using the FEM volume displacement field,
we warp the fictive preoperative image in is current state of update (Fig. 3.4b).
The resulting image is shown in Fig. 3.5b, while the result of the warping with
resection, performed by masking Fig. 3.5b with the segmentation of the whole
brain from the 5th iMR image (Fig. 3.5a), is shown in Fig. 3.5c.

5 Validation

The visual comparison of the topmost and bottommost image in each column of
Fig. 3 appears satisfying up to the 3rd column. In the 4th and 5th columns, which
corresponding to the 2nd and 3rd resections, we observe a positional discrepancy
near the ventricles. To evaluate our results, we selected for each column a par-
ticular slice from of the topmost image (masked to keep only the brain) and the
bottommost image, we extracted their edges using a Canny edge detector, and
we evaluated the nonrigid registration by computing the 95% Hausdorff distance
between the edges of these corresponding pairs of slices. For a perfect match,
this distance should be zero. To evaluate the benefit of performing the nonrigid
registration, as opposed to the rigid registration of preoperative images that
neurosurgeons typically perform, we also computed the 95% Hausdorff distance
for the edges of the whole brain region of the corresponding slice of the 1st iMR
image, which plays the role of a fictive preoperative image, and the edges of the
slice of the topmost images (as before). When a resection was actually involved
in the deformation, we did not use the 1st iMR image directly because the 95%
Hausdorff distance would be artificially high at the location where the cortex had
been resected. Consequently, we used, for the 3rd, 4th, and 5th columns, the 1st

iMR slice, masked with the whole brain region of the target image, i.e. the image
showing the current deformation. The values of the 95% Hausdorff distance are
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Brain shift 1st resection 2nd resection 3rd resection
(a) Deformation of 1st iMR 3.38/2.81 3.38/3.38 2.96/3.75 3.38/3.75
(b) Deformation of initial iMR 3.38/2.81 3.38/2.96 2.96/2.96 3.38/3.38

Table 1. Comparison of 95% Hausdorff distance (mm) without/with nonrigid
registration. (a) Case where the 1st iMR image is successively deformed. (b) Case
where the initial iMR image, i.e. the iMR image prior to the deformation being
considered, is deformed for each deformation. The comparison of (a) and (b) shows
the effect of the propagation of registration errors.

Fig. 4. (1-5) Results of deforming the initial iMR image (defined in text) for each
stage. These should be compared to the bottommost images in Fig. 3 where the 1st

iMR image was deformed in successive stages.

shown in row (a) of Tab. 5. We see that the distance increases for the defor-
mations corresponding to 2nd and 3rd resections when a nonrigid registration is
performed. This can be partly explained by the positional discrepancy near the
ventricles, and this points out the need to include ventricle surface deformations
in the biomechanical model. In addition, our nonrigid registration being based
on the surface deformations of the cortex and tumor, it is strongly dependent on
the quality of their segmentation. Another explanation for the behavior of the
95% Hausdorff distance could be the propagation of registration errors across
the 4 successive deformations. To evaluate this effect, we deformed the initial
iMR image, i.e. prior to the deformation being considered, for each stage of de-
formation, rather than deforming the 1st iMR image in successive stages. The
resulting images are shown in Fig. 4. As compared to the bottommost images
in Fig. 3, the positional discrepancy near the ventricles has clearly decreased.
The 95% Hausdorff distances of the selected slices in the images of Fig. 4 are
shown in row (b) of Tab. 5. We see that the value of 95% Hausdorff distance
now decreases for the brain shift and 1st resection, or remains identical for the
2nd and 3rd resection, where the nonrigid registration has no effect.

6 Conclusions
We have developed and tested an end-to-end system for updating preoperative
images using intraoperative images in the presence of successive deformations
due to brain shift and resections. (We have, however, skipped the important
issue of the initial rigid registration.). The nonrigid registration technique used
is based on a biomechanical model driven by the deformations of key surfaces,
extracted and tracked from successive intraoperative images. We use surface
deformations since they can generally be extracted more reliably than volume
deformations [6] can, as a result of the reduced-quality of intraoperative images.
However, the performance of the system is contingent upon the quality of seg-
mentation of key objects. In that regard, a contrast agent would be helpful.

The key and novel feature of our system is the use of 3D XFEM to handle
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tissue discontinuities without having to resort to remeshing. For a biomechani-
cal model as simple as the one used here for illustration purposes, it would be
straightforward to build a new model for each deformation. However, our goal is
to include as much information as possible from preoperative images and, as a
result, to use our system with complex biomechanical models. The modeling of
discontinuities will then surely involve some remeshing, and in that case, XFEM
could be a good alternative. While dealing with a one-time resection is relatively
straightforward with XFEM, we have found that XFEM expressed in a linear
formulation cannot deal with successive resections. However, this paper shows
an effective method for going around this problem. The results obtained give us
confidence that the approach proposed works correctly. A nonlinear formulation
of XFEM should provide a more systematic approach for dealing with succes-
sive resections. In future work, we will examine the XFEM nonlinear formulation.
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Abstract: Active contours is a powerful image segmentation 
technique based on simultaneously optimizing the overlap of a 
surface contour with the intensity image (external energy) on the one 
hand, and a constraining image-independent penalty based on the 
first and second derivatives of the contour (internal energy) on the 
other. Although the above form is applicable to a wide class of 
images, including prior information about the topology and 
smoothness as well as insights from physical theories regarding 
specific material properties of the object under study are expected to 
result in faster and more accurate segmentations. 

In this work we extend the formulation of the active contour internal 
energy for the common case of 3D-imaging lipid-bilayer membrane-
bound objects of topological genus zero. Examples include 
organelles, cells and artificial vesicles. In the non-supervised method 
presented here, the internal energy takes into account membrane 
bending elasticity as well as constraints imposed by the fact that the 
two bilayer leaflets are allowed to slide relative to each other. An 
additional topology constraint is implicitly accounted for by using a 
spherical harmonics parametric contour representation. The balance 
between internal and external energies (i.e. the regularization 
parameter) is determined using the L-curve method. 

To ensure convergence and numerical stability a good starting guess 
for the contour is essential. We show in detail a method, that also 
makes use of the L-curve, for calculating this guess, and apply the 
complete procedure to a representative synthetic data set using 
realistic physical quantities based on membrane biophysical theories 
and known experimental results. 

1 Introduction 

Active contours [1] have been used extensively as a means for automatic and accurate 
image segmentation. The main idea is to allow a contour that is superimposed on the 
image to change shape until it minimizes a cost functional (E) that takes the form 

43



internal externalE E E�� �       (1) 

with internalE  a shape prior that enforces smoothness constraints and typically depends 

on the first and higher derivatives of the contour, externalE a quantity sensitive to the 
amount of overlap of the contour with the intensity values of the image, and � a 
parameter that balances the relative importance of the two terms. Equation 1 is 
generally applicable in 2 and 3 space dimensions. Implementations of the method 
differ in the choice for �, the exact forms for internalE  and externalE , and the 
mathematical description of the contour. Subjective choices of � and physically 
unrealistic forms for internalE  result in convergence to suboptimal shapes. This 
problem has partially been alleviated by the introduction of statistical shape models 
(see for example [2]), which constrain the contour search to a subset of the shapes 
allowed by the shape description. However, statistical shape models require a training 
set and may impose constraints that are too stringent for detecting significant 
variations in shape. Most importantly, they generally do not provide a natural 
connection to the underlying biophysics that gave rise to a particular shape. Therefore 
we will address the issue of segmenting 3D intensity images in the context of 
Equation 1, when the object under study has —at least partially —known mechanical 
properties.  

1.1 Incorporation of Prior Information into the Active Contour Procedure 

In this paper, we focus on objects that are bounded by lipid membrane bilayers. 
Examples include organelles, cells and artificial bilayer vesicles (liposomes). For 
these objects biophysical theories [3] and experimental mechanical measurements [4-
6] provide prior information that can be incorporated into our edge-finding procedure. 
The theoretical predictions alone are already able to reproduce shapes that closely 
resemble experimental observations both qualitatively [7] and quantitatively [8] in 
cases where the membrane bilayer is expected to primarily determine the morphology 
(Fig.1a).  

internalE of Equation 1 is an appropriate vehicle for incorporating such prior 
information [9], which primarily depends on the membrane bending elasticity and the 
resistance of the area difference between the bilayer leaflets to deviate from some 
preferred value (Fig.1b). Fig.1a shows some of the “default” shapes that the active 
contour will tend to when such an internalE  is minimized on its own.  

Moreover, the topology of such biological objects is often restricted to that of the 
sphere. This piece of prior information we implicitly include by using a spherical 
harmonics parameterization (SHP) of the surface [10]. The spherical harmonics are 
the 3D equivalent of the Fourier series defined on the surface of a sphere (see below).  
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1.2  Other Issues: Regularization and the Starting Shape 

To avoid artificially favoring internalE over externalE or vice versa, we use an objective 
way for determining the regularization parameter���in Equation 1, namely the L-curve 
method [11], which determines � as the point of maximum curvature on the curve 
obtained when plotting  the logarithm of internalE vs. the logarithm of externalE  when 
performing the optimization for a series of values of the regularization parameter. 

However, before optimizing Equation 1, we need a good starting set of shape 
coefficients to improve convergence and numerical stability. To obtain such a set we 
map an initial surface triangulation (obtained for instance by using a marching cubes 
algorithm) to the unit sphere [12, 13]. In this article we introduce a method of 
spherical mapping that also benefits from the objectivity of the L-curve procedure. 

Our complete method is illustrated on a noisy synthetic 3D intensity data set that 
simulates 3D fluorescence microscopy images of a human red blood cell discocyte. 
To our knowledge, this is the first demonstration of 3D active contours based on 
membrane biophysics. 

2  Theory 

2.1  Membrane-biophysics-derived (internal) Energies 

Here we give the expressions used to calculate the internal (image-independent) 
energy of the contour, when we know that the observed object is bounded by a lipid-
bilayer membrane. Theoretically the shape of a membrane bilayer contour is assumed 
to minimize an energy functional (E) that –among other possible contributions–
includes the bending energy of the membrane (Eb) [14], and the area difference 
elasticity energy (EADE), which is the resistance of the area difference between the 
outer and inner leaflets (�A) to deviations from some preferred value (�Ao)[15-18].  

internal b ADEE E E� �       (2) 

The first term is given by, 

2b

S

(2 )
2b oE H C dA�

� 	
�       (3) 

where b�  (~25x10-20J [5]) is the bending modulus, H is the local curvature, and oC
is the preferred curvature. oC  is a local term that depends on the local lipid 
composition and lipid molecule geometry (Fig.1b). The second term in Equation 1 is 
given by 
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� �2
22ADE oE A A

AD
�


� � 	�       (4) 

where A is the total surface area of the contour, D is the separation between the two 
bilayer leaflets and �  is a global elastic modulus. The relative importance of Eb vs. 
EADE is controlled by the ratio / 2 /b� � � 
� �  [7]. Equation 4 constitutes a global 
term, justified by the fact that the two bilayer leaflets are allowed to slide relative to 
each other, so the effect of –for example- adding lipid molecules to one of the leaflets, 
would be an instantaneous redistribution of this perturbation over the whole shape 
(Fig.1b). In the preceding Equations, all integrations are performed over the closed 
surface S

�
. oC  and oA� cannot be independently determined and are mathematically 

not separable [19]. They enter the calculation through a unitless effective preferred 
area difference parameter / /o o b oa A A DC� 
�� � � � . Typically oa�  varies between 
0.2 and -0.2, and considerably influences the default shape (see [7] and Figure 1a).   

Fig.1. Shape energy and typical predicted shapes. (a) Theoretically predicted minimum 
energy shapes considering bending and area difference elasticities under constraints of total 
surface area and volume. Going from contour I to III, 

oa�  the parameter responsible for the 
preferred curvature and preferred area difference between the two bilayer leaflets is increased, 
while keeping the area and volume constraint the same. Contour IV shows that the theory can 
also predict nearly spherical shapes given the appropriate ratio of area to volume. Images 
shown in the bottom row are reproduced from [3] (b) Schematic of lipid bilayer showing the 
two main energy contributions entering the calculation of shape energy; bending and area 
difference elasticities. 

2.2  External energy 

Our external energy term follows the Chan et Vese formulation [20] based on the 
Mumford-Shah approach [21] 

2 2
external in in out out

innerVolume outerVolume

( ) ( )E I c dV I c dV� �� 	 � 	
 
    (5) 
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where I is the image intensity, V  the volume, cin and cout are the average intensities 
inside and outside the contour respectively, and �in and �out are hyperparameters. 

2.3  Spherical harmonics surface parameterization 

A function r of the spherical coordinates (� ,�)  may be represented as a series 
expansion, 

0
( , ) ( , )

L

LK LK
L K L

r C y� � � �
�

� �	

�� �      (6) 

where 0<� <�
 and 0<� <2
���he LKC s are the expansion coefficients, indexed by 

the integers L and K with L K L	 � �  and 0 L� � � . ( , )LKy � �  are the 
spherical harmonics basis functions defined by 

,( , ) (cos ) cos( )LK LK L Ky N P K� � � ��  when 0K � ,  (7) 
and

,( , ) (cos )sin( )LK LK L Ky N P K� � � ��  when  0K � ,  (8) 

where , (cos )L KP �  are the associated Legendre polynomials and LKN  are 

normalization constants. The ( , )LKy � � s form a complete othogonal basis set of 
well known properties [22]. The above representation is limited to surfaces (described 
as stellar surfaces) that contain an interior point that can be connected to every point 
on the surface by a straight line without intersecting the surface. We represent a 
general (stellar or non-stellar) surface S

�
 that is topologically equivalent to the sphere 

parametrically by expanding its individual Cartesian coordinates using spherical 
harmonics series, 

( , )
( , ) ( , )

( , )

x X
S y Y

z Z

� �
� � � �

� �

� � � �
� � � �� �� � � �
� � � �� � � �

�                 (9) 

where ( , )X � � , ( , )Y � �  and ( , )Z � � are  individually expanded using Equation 6,  

giving three sets of expansion coefficients ( X
LKC , Y

LKC , Z
LKC ) which completely 

define the shape. The numerical implementation of SH calculations necessitates 
choosing a series truncation (Lmax).  Also, given a set of data points, the CLKs are 
calculated according to, 

2

0
0

( , ) ( , )sinX
LK LKC X y d d






� � � � � � �� 
 
               (10) 
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 with similar equations for ( , )Y � �  and ( , )Z � � . It should be noted that the SHP is 
particularly economical and is not confined to any particular symmetry. 

2.4  Balancing internal and external energies: the L-curve method 

The regularization parameter � in Equation 1, determines the balance between our 
prior information about the observed object (usually a smoothing function), expressed 
through the internal energy, on the one hand, and fitting of the contour to the image 
data (also called the residual function), our external energy, on the other. An objective 
procedure for choosing � is the L-curve method [11]. It is constructed by plotting the 
logarithm of the residual function vs. the logarithm of the smoothing function for a 
sufficiently large range of ��values. The optimal regularization parameter value 
corresponds to the point of maximum curvature on this usually L-shaped curve, which 
we determine graphically (Fig.3b). If an L-curve calculation does not give the proper 
vertical part of the “L”, then the series is artificially (implicitly) over-truncated and 
the series truncation must be relaxed to include higher order coefficients. On the other 
hand, if the L-curve is missing the horizontal part then the theoretical prediction 
(encoded in Einternal) coincides with the actual contour, and one could conclude that the 
shape is accounted for completely by the theory. 

Note that we also use the L-curve method in this work in the context of finding the 
optimal spherical mapping for the determination of a starting guess (Fig.2f) (see 
Section 3.2). 

3  Computational Methods 

3.1  Method Overview 

We begin by generating a starting guess of our surface contour, where the 3D 
fluorescence image is thresholded using Laplacian-of-Gaussian zero-crossing edge 
detection [23]. From the resulting point-cloud a surface triangulation is generated that 
must not contain small handles or holes.  This is followed by uniformly mapping the 
surface to a unit sphere so that Equation 10 can be applied, to calculate three series 
expansions corresponding to the individual x, y and z coordinates. The coefficients of 
these expansions form the starting parametric approximation of the surface, which is 
then refined by iteratively minimizing the energy expression of Equation 1. We 
assume that changes to the coefficients introduced throughout the fitting are small 
enough so a modification of the initial spherical mapping is not necessary. The 
minimization is repeated for a sufficient range of � values and an L-curve is 
constructed. Our final surface is the one fitted with the � value that corresponds to the 
corner of the L-curve, which we determine graphically. The calculation of the internal 
energy necessitates evaluation of A, V, and H of the surface, for which we use the 
expressions in [24]. Our formula for calculating the external energy is given in the 
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Appendix. For the minimization of Equation 1 we used the downhill simplex 
(Simplex) algorithm [25]. Below we provide details regarding the spherical mapping. 

3.2  The Spherical Mapping Step 

Starting with the surface triangulation, each surface point (x, y, z) must be mapped 
onto a point (����) on the surface of the unit sphere, while maintaining connectivity 
and nearest neighbors, preserving relative triangle areas and minimizing triangle shear 
deformation. We demonstrate our procedure for accomplishing this on the spherical 
mapping of the triangulated surface of a letter E (Fig.2a). 

The first step in the topological mapping is a rough mapping of surface points to 
the unit sphere conserving connectivity. We follow the method of [10] after 
modifying it for surface triangulations. In short, two poles (vertices) are chosen on the 
surface mesh. One is identified as the "North pole" (�N) and the second as the "South 
pole" (�S). For assigning a (latitude) � value, a Laplace equation 2 0�� � , with 
Dirichlet conditions N 0� �  and S� 
�  is solved, (a stationary heat diffusion 
equation) (Fig.2b). To calculate (longitude) �, a date line is introduced along which �
is incremented or decremented by 2
, and the cyclic Laplace equation is then solved 
(Fig.2c). Now each vertex has associated with it a unique ( , )� �  coordinate and can 
be placed on the unit sphere (Fig.2d).

For a proper final shape representation the vertices must be uniformly distributed 
on the unit sphere. As a starting point, we use a modified version of equation 6 in 
[12]. The problem is to minimize 

2

2p, o,

o,4

m
i i

i
i i

i

a a
a

 !



" #" #
$ %$ %	 �$ %$ %
$ %$ %& '& '

� �
      (11) 

where p,ia  is the geodesic area of triangle i = 1, 2, …, m, on the parametric sphere, 

o,ia  is the area of triangle i on the original object, i!  is the measure of shear 
deformation of triangle i when mapping from object to parameter space, calculated 
from the local principal stretches �i�1 and �i�2 [26], 2

,1 ,2 ,1 ,2( ) 2i i i i i! � � � �� 	 , and   is a 
scaling factor that controls the linear combination and is in essence a regularization 
parameter. The first term in Edquation 11 drives the optimization to equate the 
relative triangle areas in both object and parameter spaces. The second term measures 
the extent of deformation of individual triangles relative to their undeformed state, 
which is the configuration in object space. The optimization of Equation 11 is 
performed for a series of  � values and an L-curve is constructed (Fig. 2f). The 
resulting mapping, when   is chosen properly, is uniform (Fig.2e), and is used to 
calculate the coefficients according to Equation 10 (Fig.2g middle). Non-optimal 
choices of   result in deformed surfaces that are unrealistic and unsuitable as starting 
shapes (see Figure 2g left and right).  
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Fig.2. Spherical Mapping. Parameterization of the letter E by minimization of the balance 
between area dilation and shear deformation. (a) Surface triangulation of the capital letter E, 
(b) assignment of values for longitude (�) and (c) latitude (�) to the vertices by solving the 
stationary heat equation, which provides the initial mapping of the vertices onto the unit sphere, 
(d) �,�� configuration in parameter space before performing the mapping optimization (e) �,��
configuration in parameter space after performing the mapping optimization for the  �value
corresponding to the corner of the L-curve in (f),  (f) L-curve for finding the optimal   value 
(Equation 11) that balances area preservation ( (first term in Equation 11) and polygon 
deformation ! (the second term), (g) shape models constructed by expanding the Cartesian 
coordinates in SH at an expansion truncation of Lmax = 10, after optimization of Equation 11 for 
three different values of   (corresponding to marked positions on the L-curve in (f)), number 2 
is the one with the best  .
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4  Results and Discussion 

We demonstrate our proposed scheme for biophysics-guided 3D global parametric 
active contours on a synthetic 3D fluorescence microscopy data set.  

4.1  Recovery of a known Shape from noisy 3D Pseudo-image Data  

We constructed a noisy 3D synthetic intensity data set that mimics imaging a 
membrane bilayer-labeled discocytic surface under conditions typical for confocal 
fluorescence microscopy (Fig.3a). The discocyte surface was originally generated 
with Lmax = 3. This surface is of minimum (internal) energy at 

oa� = 0.00143, for 
typical values of bending and area difference moduli (see Section 2.1) and under the 
constraints A = 140 (m2 and V = 100 (m3.

To test the consistency of our method, we applied it to the recovery of the 
discocyte shape from the noisy data set. We allowed spherical harmonic coefficients 
up to order Lmax = 22 as free parameters to be fitted, and repeated the optimization for 
decreasing values of � ranging from 104 to 10-1. At high � the optimization finds 
coefficients that minimize the overlap of the contour with the noisy image, resulting 
in an unrealistic bumpy surface (Fig.3 b contour I). As � decreases the surface 
gradually gets smoother (Fig.3 b contour II) until the corner of the L-curve is reached 
(Fig.3 b contour III).  

When we performed these calculations with the correct (to us known beforehand) 

oa� value of 0.00143, all further points on the curve coincided with the (now) corner 
point shown and no L-shaped curve was obtained. This is expected because with the 
correct biophysical parameters the shape will converge to the discocyte, driven by the 
internal energy alone, independent of the image, which in this case happens to be the 
image of the same shape, so no further degradation of the image term occurs. 
However, in the general case oa� is not accurately known, so in order to test whether 
our method is robust against deviations of oa� from its true value, we repeated the 

calculation with oa� = 0.0005, obtained the L-curve shown, and  registered a clear 
corner that corresponds to the (smooth) discocyte. Further decrease in �, led to the 
appearance of an elongated shape that minimized the internal energy under the given 
(guessed) oa� .

5. Conclusion 

In this work we extended the applicability of the method of biophysically-based 
active contours to image segmentation of membrane bilayer-bound objects into three 
space dimensions using the spherical harmonics parametric shape description. The 
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prior information about shape contour topology is incorporated implicitly in our 
choice of shape description. Our prior information about the mechanics of the 
membrane and its smoothness is explicitly formulated in an image-independent 
internal energy term that incorporates principal results from membrane biophysics 
theories and experimental membrane mechanics measurements. We also introduced a 
method for the step of initial spherical mapping. The regularization parameter needed 
for both the active contours and the spherical mapping optimizations was determined 
using the L-curve method. We demonstrated the applicability of our method using a 
realistic synthetic 3D image data set.  

Fig.3. Recovery of a discocyte from noisy synthetic data. (a) Synthetic noisy image stack 
based on a slightly tilted discocyte surface (Lmax= 3) (shown in the inset), convolved with a 
theoretically calculated point spread function. (b) L-curve for a range of � values (from 1x104

to 1x10-1.0). The starting shape was obtained by spherical mapping with Lmax= 22, numbers next 
to the data points represent log10(�). To obtain this L-curve, 

oa�  of 0.0005 was used instead of 

the true value 0.00143. At small �� values the discocytic shape changes to an elliptocyte (the 
default shape at this 

oa�  value). At high �� the external energy dominates and because high 
expansion orders were allowed, the surface tries to fit the noise, and becomes irregular. The 
optimal surface is found at the corner of the L-curve. 
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Appendix: Calculation of Eexternal

In analogy with electrostatics, one can write an “electric” field inE
�

and outE
�

corresponding to a distribution of charge 2
in( )I c	  and 2

out( )I c	 . Using  the 
Gauss theorem, 

2
external in in out out out

surface image surface

. ( ) .E E dN I c dV E dN� �� � 	 	
 
 

� � � �

  (A-1) 

where 
S SdN
� )

* *
� +

* *

�
 is the local surface normal. 

This approach would necessitate a careful and precise solution of the Poisson 
equations for the potential from which inE

�
 and outE

�
are derived. Such a treatment is 

beyond the scope of this paper, so for the sake of practicality we compute the value of 
the image at the contour positions by an integration of the functional derivative of the 
external energy, 

external
in in out out

surface surface

div divE E dN E dN
S

, � �
,

� 	
 

� � � �

  (A-2) 

This only requires the computation of the surface normals using the image value on 
the surface only, which makes the computation more efficient. 
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Abstract. Understanding the biomechanical mechanisms by which the
cerebral cortex folds is a fundamental problem in neuroscience. Cur-
rent mathematical models of cortical folding do not include three dimen-
sional geometry of developing brains extracted from experimental data.
We present a biomechanical model which integrates 3D information ex-
tracted from MRI scans of fetal lamb brains at a series of developmental
stages as an initial stage for the computation of cortical folding, and
which utilises Diffusion Tensor Imaging (DTI) measurements of white
matter fibre directions as a cue to the tension forces thought to regulate
folding. We simulated the structures that result from different loadings
and constraints, and compared the simulated with the actual geometry of
the developing brain. This work is a proof of principle that finite element
models and DTI can be combined to create a biologically meaningful
model of the cortical folding process common to higher order mammals.

1 Introduction

The cerebral cortex covers most of the superficial part of the mammalian brain.
Folding of the cerebral cortex in human and higher mammals such as the baboon
and macaque monkey is related to higher intelligence, such that the greater the
degree of cortical folding, the more intelligent the species [1]. During the initial
stages of brain development in the human embryo, a smooth cortex forms by cell
migration from subcortical structures. At the fifth or sixth month of gestation,
the cortex begins to fold, forming the gyri (outward folds) and sulci (inward
folds) from this stage until after birth [2]. The cortical folding increases the
surface area of the cortex relative to the brain volume, thought to maintain a
proportional increase of the cortical surface area during significant growth phases
of the cortical volume [3].

Mathematical models have been proposed to investigate the biomechanisms
of cortical folding, for improved understanding of the genesis of neurological dis-
orders that result in abnormal cortical folding, such as Down’s syndrome [4] and
lissencephaly, in which the brain folds are less numerous and smaller than nor-
mal folds [3]. These modelling studies simulate cortical folding via mathematical
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formulation of mechanisms including elasticity and plasticity of the cortex [5, 6],
differential growth of cortical layers [3], limitation of the growth by the skull and
white matter fibres [6], and modulation of tangential neuron migration by chem-
ical activation and inhibition [7]. No model of the 3D geometry of the developing
cerebral cortex, however, has yet been integrated with experimental data.

Current mathematical models initialise the shape of the cortex prior to fold-
ing with artificial geometries such as a closed ring [5], a flat sheet [3], or a 1D
curve [6]. In addition, most models have no direct extension to 3D [5–7]. Further-
more, the resultant simulated geometries are either compared only visually with
true cortical folding [7], or are quantitatively evaluated, but without comparison
to a real cerebral cortex [5].

In order to understand the regulation of cortical folding by biomechanical
factors including the 3D developing cortical geometry and white matter fibre
tension forces, for which no experimental data are available from direct mea-
surement, we propose a 3D biomechanical finite element model that integrates
experimental data via Magnetic Resonance Imaging (MRI).

(a) (b)

(c) (d)

Fig. 1. Slices of T2-weighted MRI data for fetal sheep brains at a) 70 b) 90 c) 110 and
d) 130 days gestation.

High-resolution MRI data are acquired for a set of fetal lamb brains at 70, 90,
110 and 130 days of gestation. As evident in Fig. 1, the surface of the 70 day brain
is smooth with only a few shallow dimples. The greatest increase in the number
of sulci occurs between 70 and 90 days gestation, as demonstrated in Fig. 2.
For that reason, this study focuses on modelling the geometric deformation of a
cortical region between 70 and 90 days gestation. The geometry of a smooth 70
day cortical region is extracted from the MRI data. The deformation of this initial
shape is computed via a dynamic solid stress-strain model, and is subsequently
compared with the true 90 day brain.
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We integrate experimental MRI data by using white matter fibre anisotropy,
as measured by Diffusion Tensor Imaging (DTI) [8], as a cue to tension applied
between subcortical structures and the interior cortical surface. White matter
fibre tension has been proposed by Van Essen to be a critical factor in the
regulation of cortical folding [9].
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Fig. 2. Number of sulci in the fetal lamb brain as a function of gestational age.

2 Methods

2.1 Preparation of Fetal Lamb Brains

Fetal sheep brains are extracted at the relevant gestational time points. Each
fetus is perfused transcardially with 500-1000ml of heparinized saline according
to the size of the fetus, followed by the same volume of 4% Paraformaldehyde
(PFA). The brain is subsequently removed from the fetus, and is placed in 4%
PFA at least 48 hours before the MRI scan.

2.2 Acquisition of MRI Data

A Brüker Biospec 4.7T animal MRI scanner is used. T2-weighted and diffusion
weighted imaging (DWI) data are acquired for each of the brains via a multi-
slice multiecho sequence and a standard DTI sequence. Coronal slices of 1mm
thickness with in-plane resolution of 0.258× 0.258 mm2 are acquired perpendic-
ular to the anterior-posterior commissure line. For the 70 day brain, the imaging
matrix is 128 × 128 × 30 (Fig. 3a), while the imaging matrix is 256 × 256 × 45
(Fig. 3b) for the 90 day brain due to the increased brain size. TE = 50ms for
both brains, TR = 4s and 10s for the 70 and 90 day brains, respectively. Twelve-
direction DWI data are acquired following the T2-weighted scan with the same
matrix size, spatial resolution, TE and TR, with a b-value of 1000 s/mm2 for
both brains.
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2.3 Cortical Mesh Construction

To extract the 3D cortical geometry, a dorsal segment from each brain vol-
ume between the longitudinal cerebral fissure, which separates the left and right
hemispheres, and the Sylvian sulcus of the left hemisphere, is selected, as shown
in Fig. 3. The cortex is manually delineated across slices within the segment
and saved as a binary image mask. The 2D cortical contour is extracted from
each slice of the volume, and using COMSOL Multiphysics1, a 3D volumetric
geometry is produced through filling and lofting together the 2D geometries.
COMSOL’s meshing feature is used to generate meshes for the cortical geometries
with Lagrange-Quadratic tetrahedral elements.

(a) (b)

(c) (d)

Fig. 3. Coronal slice of a) 70 day and b) 90 day brain, T2-weighted MRI. Manually
delineated boundaries of cortical segment for c) 70 and d) 90 day brain.

2.4 Computation of Cortical Folding

Mathematical Model: Due to the dynamic and significant deformation in-
volved in cortical folding, the process is formulated as a time-dependent large
deformation. The Cauchy stress, σ, and Green-Lagrangian strain tensor, ε, are
used as measurement of the stress and strain internal to the cortex [10]. The
Cauchy stress is defined as the force per unit area in the deformed geometry,
and an element of Green-Lagrangian strain tensor ε is as follows:

εij =
1
2

(
3∑

α=1

∂xα

∂ai

∂xα

∂aj
− δij

)
(1)

1 http://www.comsol.com/
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where εij is the element of strain tensor ε at row i and column j, a and x are
coordinates for original and deformed positions respectively, and δij = 1, iff i =
j.

The principle of virtual work evolves the geometry, and is expressed as:∫
S

σniδuidS +
∫
V

BiδuidV −

∫
V

ρüiδuidV =
∫
V

σjiδεijdV (2)

where the four terms in (2) are the virtual work done by the surface stress force,
the external body force, the inertial force and the internal force [11], respectively.
σni and Bi are surface stress force and external body force, respectively. ρ is mass
density, and üi is acceleration.

Although more realistic nonlinear constitutive relationships are to be tested
in the future, the cortical tissue constitutive relationship is assumed to be linear
and isotropic to simplify the problem. This follows the linear formulation of
elastic material properties applied in neurosurgical simulation of human brain
deformation [12].

Experimental measurements of the elastic properties of the fetal sheep brain
are not available. We therefore use the relevant values for the human brain, for
which the Young’s modulus is 2.1× 105 N/m2, the Poisson ratio is 0.45, and the
mass density of the cortical tissue is set to be 1.04×103 kg/m3, as in the human
brain [13].

Loading and Constraints The cortical surface is categorized into three regions
(Fig. 4) with different loadings and constraints for displacement, the exterior
surface, the interior surface, and the anterior and posterior surfaces.

Fig. 4. Loading and constraints on surface regions. Blue: exterior surface, green: inte-
rior surface, red: anterior and posterior surfaces.

The exterior surface is the boundary between the cortex and cerebral-spinal
fluid (CSF), onto which a pressure force is applied by the CSF with a spatially
homogeneous distribution. The CSF pressure is set according to experimental
measurement [14] to be 15mmHg, normal to the surface.

The interior surface is the boundary between the cortex and white matter
fibres, with the latter applying tension forces to the cortex [9]. Based on obser-
vation of the principle eigenvector of the diffusion tensor reconstructed from the
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DWI data for the 70 day brain (see Fig. 5), the force applied from white matter
fibres onto the interior surface of the cortex is set to be along the normal direc-
tion of the local surface, in agreement with Hilgetag and Barbas’s observation
in the rhesus brain [15].

(a) (b)

Fig. 5. (a) Principle diffusion tensor eigenvectors (red) overlaid on T2-weighted image.
(b) Zoomed section displaying homogeneous distribution of vectors perpendicular to
the boundary between cortex and white matter.

The anterior and posterior surfaces of the cortical section are the boundaries
between different parts of the cortex. To limit the spatial domain of the problem
within the cortical region extracted, no loading is applied to these two surfaces,
and displacement normal to these two surface regions is inhibited. For the same
reason, the ends of the cortical region are fixed to prevent displacement. A
Rayleigh damping force is applied with a mass damping of 1s−1, and a stiffness
damping of 0.001s.

Solution of Equations The iterative Generalized Minimal Residual (GMRES)
solver with incomplete lower-upper (LU) factorization preconditioner for non-
symmetric matrix problems is selected from COMSOL Multiphysics’s modules
to solve for the deformation of the geometry of the 70 day cortical region with
105 to 106 degrees of freedom.

3 Results

The 3D geometries of the 70 (Fig. 6) and 90 (Fig. 8c) day cortical regions are
extracted from T2-weighted MRI data, as detailed in Sec. 2.3. The 70 day mesh,
initially consisting of 2902 elements, is refined to 11199 tetrahedral elements
(Fig. 6b).

Values for white matter fibre tension in developing brains are not available.
We specify two loading conditions for simulation. Firstly, the magnitude of pres-
sure on the interior surface is set to be 4000 N/m2, double the magnitude of the
CSF pressure, and pushing normal to the surface in the central region (blue in
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(a) (b)

Fig. 6. Geometry of 70 day cortical region. (a) Volumetric rendering (b) Initial mesh.

Fig. 7a), while pulling the interior surface at the both lateral regions (green in
Fig. 7a).

In the second scenario, a force with a pressure magnitude of 1000 N/m2 is
applied tangential to the interior surface at the central part of the cortical region
(Fig. 7b), and the normal pressure is reduced to 3000 N/m2 in order to prevent
over compression of the cortex. This is to simulate the effects of tangential growth
of the cortex, resulting in tangential tension at the superficial layer of the cortex.

(a) (b)

Fig. 7. Loadings on interior surface. Blue: Force applied onto cortical surface. Green:
Force pulling away from cortical surface. (a) Loading without tangential force (b)
Loading with tangential force.

Although simulation of the time scale for a real gestational period is planned
for future work with reduced magnitudes of loading pressure, the simulation
is stopped in order to prevent excessive deformation compared to the 90 day
cortical region. The computation of the deformation of the 70 day cortical region
takes 4-8 hours on a 2.4 GHz PC with 2.5Gb memory. The resultant geometries
of the folded cortical region without and with tangential force are shown in
Fig. 8a and Fig. 8b, with the true 90 day region in Fig. 8c.

The cortical thickness changes in the sulci and gyri, as summarised in Table 1.
There is an increase in cortical thickness at the two lateral inward folds compared
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(a) (b) (c)

Fig. 8. (a) Simulated geometry without tangential force. (b) Simulated geometry with
tangential force. (c) 90 day geometry extracted from T2-weighted MRI data.

Gyri Sulci Ratio
left right mean (gyri/sulci)

No tangential force 1.01 1.29 1.63 1.46 0.69

With tangential force 1.00 1.15 1.63 1.39 0.72

90 day geometry 1.07 1.81 1.90 1.86 0.58

Table 1. Cortical thickness in gyri and sulci (mm)

to a homogeneous cortical thickness of 1.09 mm within the 70 day cortical region.
This is due to the compression of the central part of the cortex by the CSF
pressure from the exterior surface and the normal pushing force from the interior
surface. At the two lateral inward folds, the normal force pulls the interior surface
of the cortex away from its exterior surface.

The application of a tangential force on the interior surface at the central
part of the cortical region results in more realistic geometry (Fig. 8b) with a
broader gyral section as in the real 90 day cortical region. The cortical thickness
in a scenario without tangential force is compared with that of a scenario with
a tangential force. There is larger change in cortical thickness for the simulation
with tangential force compared to the result without tangential force (Table 1)
both in gyri and sulci. Hilgetag and Barbas [15] suggested this to be a result
of the normal compression onto the deep layers of the cortex, induced by the
tangential tension applied on the superficial layer of the cortex, verified in this
simulation with tangential force. As is shown in Table 1, the cortical thickness
in simulation results either with or without tangential force is less than that of
the 90 day cortical geometry in both gyri and sulci. This is due to the limitation
that cortical thickness growth is not simulated in this study.

4 Discussion and Conclusions

This study simulates the cortical folding of an intial 3D geometry directly ex-
tracted from MR volumetric data, for a fetal lamb brain at 70 days of gestation.
This is immediately an improvement to existing theoretical 1D and 2D models of
cortical folding that contain no experimental data. The physical properties and
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displacement constraints for the brain tissue and CSF pressure are nominated up
according to experimental human brain measurements. Our biologically mean-
ingful mechanical model simulates the tension applied by white matter fibres,
based on DTI data, to regulate cortical folding as proposed by Van Essen [9].

The 3D geometry resultant from the computation of cortical deformation is
qualitatively similar to the geometry directly extracted from the MR volumet-
ric data for the folded cortical region in the 90 day brain. The results of this
simulation verify as a proof of principle that cortical folding can be simulated
in 3D with an initial geometry directly extracted from a developing brain. The
computed geometric change simulates the cortical folding both outward and in-
ward. The simulated change of cortical thickness agrees with the observation
and measurement on the real 90 day cortical region. Application of tangential
tension at the interior surface of the cortical region results in broader outward
folding as well as a further decrease in cortical thickness, which results in the
simulated geometry being more similar to the actual cortical region. However,
the increase of the thickness and tangential size of the cortex is not formulated
in the current study, which leads to difference between the simulated and actual
geometries.

We are currently working on a number of improvements to this preliminary
investigation. Firstly, the nonlinear formulation of the constitutive properties of
brain tissue, which are more realistic for soft tissues [10, 16, 17] and have been
implemented in simulation of brain deformation for image registration required
by neurosurgery [18] as well as for modelling the deformation of other soft tis-
sues [19–21]. Secondly, the mechanical force applied on the interior surface of the
cortex can be quantitatively integrated from DTI data as an improvement to the
current qualitative formulation. In this approach, the orientations of the princi-
ple eigenvectors of the diffusion tensors will provide the direction of the white
matter fibre tension, and the anisotropy of the diffusion will be proportional to
the magnitude of the tension force. In addition, the full cortex will be considered,
rather than the present section, and the brains of subsequent gestational ages
will be integrated, for a complete picture of the folding pattern.
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Abstract. Real time computation of soft tissue deformation is important for the 
usage of augmented reality devices and for providing haptic feedback during 
operation or surgeon training. This requires algorithms that are both fast and ac-
curate and can handle material and geometric nonlinearities. A combination of 
such algorithms is presented in this paper, starting with the finite element for-
mulation and integration scheme used and addressing common problems such 
as hourglass control and locking. The computation example presented proves 
that by using these algorithms real time computations becomes possible without 
having to sacrifice the accuracy of the results. 

Keywords:  non-locking tetrahedron, hourglass control, real time computations, 
Total Lagrangian formulation, explicit time integration 

1 Introduction 

Systems using augmented reality for image guided surgery are important tools that 
can help surgeons to improve the accuracy and limit the adverse effects of surgery. 
The existing imaging technology, such as MRI, provides good quality pre-operative 
images that can be used in such a system. These images can be analyzed and regis-
tered on the real organs so that the surgeon can visualize the targeted area while the 
procedure is progressing.  

Another area where fast computational algorithms are required is the Computer In-
tegrated Surgery (CIS) systems that must provide haptic feedback to the surgeon. 
Various haptic interfaces for medical simulation are especially useful for training of 
minimally invasive procedures (laparoscopy/interventional radiology) and remote 
surgery using teleoperators. These systems must compute the interaction force be-
tween the robotic tool and the tissue and provide it to the surgeon at frequencies in the 
area of 500 Hz [1]. 

Biomechanical models are used for solving the haptic feedback problems using the 
finite element method, but many such models are simplified in order to decrease the 
computational effort, e.g. they consider only infinitesimal deformations and/or linear 
material laws. These simplifications have great influence on the accuracy of the ob-
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tained results in a finite element analysis, inducing significant errors [2-4]. Therefore 
material law and geometric non-linearity must be considered when a solution method 
is chosen. 

There are three methods of reducing the computation time: improvement of the al-
gorithms, usage of faster hardware or usage of parallel computing. We will concen-
trate on the first method, as the usage of faster hardware is limited by the existing 
technology and the usage of parallel computing leads to more complex and more ex-
pensive hardware and software systems.  

The paper is organized as follows: the proposed algorithms are presented in section 
2, a computational example demonstrates the efficiency of these algorithms in section 
3 and the conclusions are presented in section 4.  

2 Finite element algorithms 

When designing a finite element solution method there are many aspects that must be 
considered, such as the formulation used (Total or Updated Lagrangian), time integra-
tion scheme and the type of elements used for constructing the mesh. We will discuss 
these aspects in the following section.         

2.1 Total Lagrangian Explicit integration 

Various spatial discretisation schemes are possible while using the finite element 
method [5]. The algorithms used by the great majority of commercial finite element 
programs use the Updated Lagrangian formulation, where all variables are referred to 
the current (i.e. from the end of the previous time step) configuration of the system 
(Ansys [6], ABAQUS [7], ADINA [8], LS Dyna [9], etc.). The advantage of this ap-
proach is the simplicity of incremental strain description. The disadvantage is that all 
derivatives with respect to spatial coordinates must be recomputed in each time step, 
because the reference configuration is changing. The reason for this choice is histori-
cal – at the time of solver development the memory was expensive and caused more 
problems than the actual speed of computations. The first key idea in the finite ele-
ment algorithms development was to use the Total Lagrangian formulation of finite 
element method, where all variables are referred to the original configuration of the 
system. Second-Piola Kirchoff stress and Green strain are used. The decisive advan-
tage of this formulation is that all derivatives with respect to spatial coordinates are 
calculated with respect to original configuration and therefore can be precomputed. 
The proposed stress and strain measures are appropriate for handling geometric non-
liniarities (finite deformations).  

The usage of Total Lagrangian explicit integration for simulating physically realis-
tic deformations was also proposed in [10].  A method for decreasing the computation 
time when using non-linear elasticity was presented in [11], but it only works for tet-
rahedral meshes and special elastic material laws. 

Because biological tissues behavior can be described in general using hyper-elastic 
or hyper-visco-elastic models [12], the usage of the Total Lagrangian formulation also 
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leads to a simplification of material law implementation as these material models can 
be easily described using the deformation gradient. 

The integration of equilibrium equations in time domain can be done using either 
implicit or explicit methods [13-15]. The most commonly used implicit integration 
methods, such as the Newmarks’ constant acceleration method, are unconditionally 
stable. This implies that their time step is limited only by the convergence/accuracy 
considerations.  However, the implicit methods require solution of set of non-linear 
algebraic equations at each time step. Furthermore, iterations need to be performed 
for each time step of implicit integration to control the error and prevent divergence. 
Therefore, the number of numerical operations per each time step can be three orders 
of magnitude larger than for explicit integration [13].  

On the other hand, in explicit methods, such as a central difference method, treat-
ment of non-linearities is very straightforward and no iterations are required. By using 
a lumped (diagonalised) mass matrix, the equations of motion can be decoupled and 
no system of equations must be solved. Computations are done at the element level 
eliminating the need for assembling the stiffness matrix of the entire model. Thus, 
computational cost of each time step and internal memory requirements are substan-
tially smaller for explicit than for implicit integration. There is no need for iterations 
anywhere in the algorithm. These features make explicit integration suitable for real 
time applications. 

However, the explicit methods are only conditionally stable. Normally a severe re-
striction on the time step size has to be included in order to receive satisfactory simu-
lation results. Stiffness of soft tissue is very low [16-18]: e.g. stiffness of brain is 
about eight orders of magnitude lower than that of steel. Since the maximum time step 
allowed for stability is (roughly speaking) inversely proportional to the square root of 
Young’s modulus divided by the mass density, it is possible to conduct simulations of 
brain deformation with much longer time steps than in typical dynamic simulations in 
engineering. A detailed description of the Total Lagrange Explicit Dynamics [TLED] 
algorithm is presented in [19]. 

2.2 Elements used in the mesh 

Because of the computation time requirement, the mesh must be constructed using 
low order elements that are not computationally intensive, such as the linear tetrahe-
dron or the linear under-integrated hexahedron. The standard formulation of the tetra-
hedral element exhibits volumetric locking [14], especially in case of soft tissues such 
as the brain, that are modeled as almost incompressible materials [17]. Therefore 
hexahedral elements are preferred.  

Many algorithms are now available for fast and accurate automatic mesh genera-
tion using tetrahedral elements, but not for automatic hexahedral mesh generation 
[20-22]. This is one reason why many authors proposed the usage of tetrahedral 
meshes for their models [23-26]. In order to automate the simulation process, mixed 
meshes (having both hexahedral and tetrahedral elements) with predominantly hexa-
hedral elements are the most convenient. 

The under-integrated hexahedral elements require the usage of an hourglass control 
algorithm in order to eliminate the zero energy modes which arise from the one-point 
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integration [27]. Special algorithms for handling hourglass control for the hexahedral 
elements and to reduce locking of the tetrahedral elements must be implemented. 

2.3 Hourglass control 

One of the most popular and powerful hourglass control algorithms, that is currently 
available in many commercial software finite element packages, is the one proposed 
by Flanagan and Belytschko in [27]. This method is applicable for hexahedral ele-
ments with arbitrary geometry undergoing large deformations.  

Starting from that algorithm proposed by Flanagan and Belytschko we could show 
that the Total Lagrangian formulation is also recommended from the point of view of 
efficient hourglass control implementation, as many quantities involved can be pre-
computed. We have shown in [28] that the hourglass control forces for each element 
can be computed (in matrix form) as: 

u��F tTHgt k 0000 =  (1) 

where k is a constant that depends on the element geometry and material proper-
ties, Y is the matrix of hourglass shape vectors and u is the matrix of current dis-
placements. The notation from [14] is used, where the left superscript represents the 
current time and the left subscript represents the time of the reference configuration, 
which is 0 for Total Lagrangian. In (1) all quantities except u are constant and can be 
pre-computed, making the hourglass control mechanism very efficient.  

2.4 Improved tetrahedral elements 

There are a number of improved (non-locking) linear tetrahedral elements already 
proposed by different authors [29-31]. These formulations are either much more com-
putationally intensive than the standard formulation or the volumetric locking control 
mechanism depends on material properties (e.g. bulk modulus), making harder the in-
terfacing of different materials. Our volumetric lock control mechanism is computa-
tionally inexpensive and depends solely on kinematic variables.  

As defined in [30], the nodal Jacobian is the ratio between the current and initial 
nodal volumes. The nodal volume is computed as a sum of fractions of the surround-
ing element volumes.  

Using the nodal Jacobians, an average Jacobian can be computed for each element. 
Because the element Jacobian is equal to the determinant of the element deformation 
gradient, we define a modified element deformation gradient that has the same iso-
choric part as the normal deformation gradient, but the volumetric part is modified so 
that its determinant (and therefore the volumetric deformation) is equal to the average 
element Jacobian. 

The computation of the nodal forces (or stiffness matrix) can now be done in the 
usual manner, but using the modified deformation gradient instead of the normal de-
formation gradient for defining the strains. This way there is no need for computing 
the isochoric and deviatoric components of the internal forces separately, and the ex-
isting material law can be used [32].  
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A similar approach is used in ABAQUS [7] for defining the selectively reduced in-
tegration of the volumetric term for the fully integrated first-order isoparametric 
hexahedral elements, in order to prevent locking in incompressible or nearly incom-
pressible cases. The difference is that while for the selectively reduced integrated 
hexahedra the Jacobians are averaged over an element, in our case the Jacobians are 
averaged between elements sharing the same node.   

 

3 Computational example 

A brain indentation simulation was conducted in order to assess the computational ef-
ficiency and the accuracy of the presented algorithms. The same experiment was con-
ducted using the commercial software package Abaqus. The mesh we used has 2428 
nodes and 2059 elements (2023 under-integrated hexahedron and 36 improved tetra-
hedral elements in the indentation area - see Fig. 1).  

 

 

Fig. 1. Brain indentation experiment – the mixed mesh is deformed by displacing 4 nodes 

 
 a)                                                               b) 

Fig. 2. Computed displacements (a) and reaction forces (b) using Abaqus implicit 
and our algorithms 
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The indentation was simulated by displacing 4 nodes in the direction normal to the 
brain surface by 20 mm using a smooth loading curve. An almost incompressible non-
linear neo-Hookean material was used for the brain tissue (mass density of 1000 
kg/m3, Young’s modulus in undeformed state equal to 3000 Pa and Poisson’s ratio 
0.49) and an almost incompressible linear material for the ventricle (mass density of 
1000 kg/m3, Young’s modulus in undeformed state equal to 10 Pa and Poisson’s ratio 
0.49). The same constraints as in [33] were used and brain symmetry was assumed.  

Computations were performed on a standard 3.2 GHz Pentium 4 desktop using 
Windows XP operating system. The default options were used for the Abaqus implicit 
solver. Fully integrated mixed formulation elements were used in Abaqus, which are 
the golden standard elements in case of almost incompressible materials simulations. 

The simulation consisted of 2000 time steps and took 3.8s using TLED, giving a 
force feedback frequency of 526 Hz. The Abaqus implicit simulation performed 100 
time steps in more than 5 minutes. There is a very good concordance between the re-
sults obtained using our software and the results from the Abaqus simulation, in case 
of both displacements and reaction forces (see Fig. 2) – the displacements almost 
overlap and the maximum relative error in reaction forces is 2.5%. 

4 Conclusions 

In this paper we presented a suite of finite element algorithms that can be used for ac-
curate and fast computation of soft tissue deformation for surgical simulation. The ba-
sic concept behind these algorithms is the usage of the Total Lagrangian formulation 
for solving finite element problems. The presented algorithms cover issues related to 
time integration, hourglassing and volumetric locking. We use fully nonlinear formu-
lation, accounting for large deformations, rigid body motions and material non-
linearities. 

Explicit time integration is the preferred method for performing real time simula-
tions. The treatment of non-linearities is straightforward, without the need of any it-
eration. Even if the method is only conditionally stable, the material properties of bio-
logical tissue make possible the usage of much larger time steps compared with other 
engineering applications. 

A new tetrahedral element formulation based on the average nodal Jacobian was 
developed. This formulation uses only kinematic variables for controlling the volu-
metric locking, and therefore the usage of different materials and the implementation 
in an existing finite element code can be made without difficulties.  

A very efficient hourglass control implementation is proposed for the under-
integrated hexahedral element. Having only one integration point, this element is very 
inexpensive from the computational point of view, being a perfect candidate for real 
time surgical simulations. Using this type of element and the improved tetrahedral 
element for simulations using mixed meshes is a step towards complete automated pa-
tient specific surgical simulation. 

The simulation example confirms the speed of the presented algorithms. We could 
compute reaction forces at frequencies higher than 500 Hz for a mesh having more 
than 2000 hexahedral elements on a simple PC workstation.  The accuracy of our re-
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sults was demonstrated by comparing them with the results of a similar simulation 
done using much more complex elements in the commercial finite element software 
Abaqus. 
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Abstract. An interactive finite element simulation of the beating heart
is described in which the intrinsic motion is implied from preoperative
4D tomographic scan data. The equations of motion are reversed, such
that given changes in node displacements over time, the node forces that
produce those changes are recovered. Subsequently, these forces are re-
solved from the global coordinate system into systems local to each mesh
element. Therefore, at each simulation time step, the collection of node
forces can be expressed as simple weighted sums of current node posi-
tions. Importantly, this facilitates the combination of extrinsic forces such
as those due to tool-tissue interactions, changes in the relative direction
in which gravity acts, and effects due to insufflation of the thoracic cav-
ity and left lung deflation. Through the development of an image-guided
coronary artery bypass application of the daVinci tele-manipulator sys-
tem, the method has been applied initially to volumetric images of a
pneumatically-operated beating heart phantom.

1 Introduction

During the past decade, technical innovations have led to considerable advances
in cardiac surgery. One such advance is the introduction of minimally invasive
techniques. In particular, robotic tele-manipulator systems have made totally
endoscopic coronary artery bypass (TECAB) a reality. But reductions in inci-
sion sizes and post-operative recovery times have seen corresponding increases
in technical difficulty and durations of the procedures. This is partly because the
surgeon cannot touch and palpate tissues directly, thereby making it more diffi-
cult to locate key anatomical structures beneath the tissue surface, and partly
because of the limited field of vision afforded by the endoscopic cameras. Image
guidance, using tomographic scan data acquired preoperatively, is one approach
which addresses these limitations [1, 2]. A key requirement for image guidance
in TECAB is the availability of 2D-3D registration techniques that can accu-
rately process complex motion patterns and deformations. In addition to the
intrinsic cardiac and respiratory motion, one must take into account tool-tissue
interactions, effects due to left lung deflation, insufflation of the thoracic cavity,
and the patient’s position on the operating table relative to that adopted for
preoperative scans.
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This paper introduces a finite element model where the sequence of node
forces required to produce intrinsic motion is recovered. These forces are resolved
from the global coordinate system to be functions of their local geometry. In this
way, their application is consistent with large-scale deformations and rotations
and, more importantly, other extrinsic forces can be combined. The technique
could be said to bring time-varying 3D scan data to life, such that it can be
interacted with and not only observed.

Several relevant ideas have been put forward recently. In particular, this
work builds on the image-guidance approach of Wang [3] and Wang et al. [4],
who simulate tool-tissue interactions between a phantom heart and da Vinci
endowrist instrument, integrating 3D geometry reconstructed from preoperative
CT/MRI scans with a non-linear finite element model. The heart is nominally
static, and has no intrinsic beating motion. Nakao [5] describes a model of the
pulsating aorta, driven by cyclic changes in aortic blood pressure, which can
be palpated by virtual tools in the context of a cardiac surgery simulation.
Szalpa et al. [6] have developed an image guidance system for minimally-invasive
cardiac surgery, whereby endoscopic images of a beating heart phantom are
overlaid with CT images of the same. To reconstruct arbitrary phases of the
cardiac cycle, non-linear free-form deformations are used to warp a high-quality
image of the diastolic phase. Similarly, Wierzbicki et al. [7] create a dynamic
epicardial surface mesh from a sequence of CT images. Chandrashekara et al.
[8] have developed a non-rigid registration technique, based on Catmull-Clark
subdivision lattices, to track the motion of the left ventricle in tagged MR images.
Various finite element simulations have been described in which deformations are
known a priori. Specifically, Kruggel and Tittgemeyer [9] use an inverse finite
element model to derive a force field given an observed deformation of the brain.
Kauer [10] also uses an inverse model to calibrate the properties of a visco-elastic
material given experimental pressure data and resulting tissue deformations.

2 Methods

The tetrahedral finite element mesh comprises N nodes, and therefore has a
maximum 3N degrees of freedom. In general, zero or more of these freedoms will
be restrained. Following the notation in [11], restrained freedoms are specified
by the node freedom array rjk, where the coordinate axes are labelled j = 0, 1, 2
and the nodes are numbered k = 0, 1, . . . , N −1. Non-negative entries in the
array label the D degrees of freedom in the mesh. The initial mesh geometry is
specified by the global coordinate array gjk. The equations of motion for a linear
elastic solid are expressed in terms of the D displacements from the initial mesh
configuration, i.e. u = [u0 u1 . . . uD−1]�. Thus, they can be written as

Mü + Cu̇ + Ku = f (1)

where M is the mass matrix, C is the viscous damping matrix, K is the stiffness
matrix, f is the time-varying vector of applied forces, and u, u̇ and ü are the
displacement, velocity and acceleration vectors, respectively. Rayleigh damping
is assumed, i.e. C = αmM + αkK.
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2.1 Average Acceleration Integration

If Δt denotes the duration of each simulation time step, then using the Newmark
family of integration methods [12], the discretised equations of motion take the
following form. One can employ the implicit average acceleration method by
setting β = 1/4 and γ = 1/2.

ai = 1
βΔt2 ui + 1

βΔt u̇i + ( 1
2β − 1)üi

bi = γ
βΔtui − (1 − γ

β )u̇i − (1 − γ
2β )Δtüi

ui+1 =
[
K + γ

βΔtC + 1
βΔt2 M

]−1

(fi + Mai + Cbi)

u̇i+1 = γ
βΔtui+1 − bi

üi+1 = 1
βΔt2 ui+1 − ai

(2)

Given initial displacements, velocities and accelerations, the equations are iter-
ated in the order listed above at each time step. The linear system is solved
using Cholesky decomposition and back-substitution. The positions pjki of each
node k at any particular time step i are given by the following expression.

pjki =
{
gjk + urjki if rjk ≥ 0
gjk otherwise (3)

2.2 Recovering Forces from Displacements

The motion is assumed to be cyclic, spanning a total of T time steps. Successor
and predecessor functions of the time index i are defined as follows.

next(i) =
{
i+ 1 if i < T − 1
0 otherwise prev(i) =

{
i− 1 if i > 0
T − 1 otherwise (4)

Using these definitions, two-sided finite difference approximations to the first
and second-order derivatives of the displacement vector yield the following ex-
pressions for velocity and acceleration.

u̇i = 1
2Δt

(
unext(i) − uprev(i)

)
üi = 1

Δt2

(
unext(i) − 2ui + uprev(i)

)
(5)

These are used to compute the initial conditions u̇0 and ü0 from the known
displacements. By inverting the displacement update step in (2) as follows, one
can compute the discretised applied forces from known changes in displacement.
Then by construction, if one were to solve the equations of motion and apply
these forces at the appropriate times, one would recover the original cyclic motion
exactly and indefinitely.

fi =
[
K +

γ

βΔt
C +

1
βΔt2

M
]
ui+1 − Mai − Cbi (6)
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2.3 Forces as Functions of Local Geometry

In order to combine intrinsic and extrinsic forces, the former must be expressed
not in the global coordinate system, but for each node in terms of its local sur-
rounding geometry. With the introduction of extrinsic forces, the geometry may
deviate from the original cyclic motion through potentially large-scale deforma-
tions and rotations. By resolving intrinsic forces locally, they are made to act in
the appropriate direction in conjunction with any extrinsically induced motion.

The intrinsic force acting on a particular node in the mesh is assumed to
originate from the finite elements which contain that node. Indeed, an approxi-
mation is made whereby the force receives an equal contribution from each such
element. For a given element at each point in time, the edge vectors from the
node in question to the other three nodes in that element define a local basis
in terms of which that element’s fraction of the node force can be expressed.
This amounts to equating the force to a weighted sum of those edge vectors and
solving for the weights. Subsequently, the weights are further accumulated over
the node’s other parent elements, ultimately building a set of weights that links
all the intrinsic forces to the geometry of the entire mesh.

Labelled with coordinate indices j, components hjki of the node forces are
mapped onto those applicable to each degree of freedom fi = [f0

i f
1
i . . . f

D−1
i ]�

by the node freedom array.

hjki =
{
f
rjk
i if rjk ≥ 0

0 otherwise (7)

Figure 1 (left) depicts at time step i a typical node k with its recovered force,
and the five surrounding elements e0, ..., e4 to which it belongs. In general, a
node will be common to Mk elements. Figure 1 (middle) illustrates the first
element e0, and the three edge vectors bj0i , bj1i and bj2i which, with the node
itself, define the geometry of the element at that instant. In order to express the
required fraction of the force in terms of local mesh geometry, its components
in the global coordinate system are equated to weighted combinations of these
edge vectors as follows.⎡

⎣ b00i b01i b02i
b10i b11i b12i
b20i b21i b22i

⎤
⎦

⎡
⎣w0

i

w1
i

w2
i

⎤
⎦ =

1
Mk

⎡
⎣h

j0
i

hj1i
hj2i

⎤
⎦ (8)

The weights are determined by direct inversion of the left-hand-side matrix. By
accumulating contributions from each element containing the node, writing edge
vectors in terms of node positions, incorporating the node freedom array, and
considering all nodes, the total intrinsic force for each degree of freedom l can
be expressed as

f li =
∑
j

∑
k

vjkli pjki (9)

which lends itself particularly well to efficient implementation. Thus, in the ab-
sence of extrinsic forces and together with the finite element model, the sequence
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of aggregate weights vjkli completely determines the cyclic motion of the mesh.
At each point in time, intrinsic forces are determined by local geometry only.
The connectivity of the mesh dictates that many of the weights will be zero.

In order to ensure that the magnitudes of the intrinsic forces f li , expressed
as functions of position, do not give rise to simulation instability, the forces are
normalised at each time step to have the same magnitude as those implied from
the original motion where no extrinsic forces are present.

Fig. 1. Force resolution using local geometry and a typical external face

2.4 Tool-Tissue Interactions

Tool-tissue interactions are combined in the simulation by means of a simple in-
strument model, in which the end effector is taken to be a line segment. Barycen-
tric coordinates returned by the collision detection algorithm upon detection of a
face intersection are used to distribute an additional applied force appropriately
over its three nodes. The magnitude of the force is proportional to the depth of
segment penetration.

2.5 Insufflation

The mesh comprises a set of external triangular faces upon which pressurised
insufflation gas can exert force. Figure 1 (right) shows one such face at a certain
instant in time i, comprising nodes pj0i , pj1i and pj2i . It is assumed that the
force due to insufflation pressure acts in a direction normal to the face, with a
magnitude proportional to its area. The force is distributed uniformly over each
of the face’s three nodes. Viscous and frictional forces acting in other directions
are assumed to be negligible. The face area A and unit normal n̂ are simple
functions of the node positions. At each simulation time step, insufflation forces
are accumulated over all external faces in the mesh to give the total additional
force applied to each node.
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2.6 Gravity

Let g be the constant vector of node gravitational loads computed by integration
of the element shape functions over all elements [11] during simulation initial-
isation. To account for changes in orientation relative to the position adopted
during preoperative scans, the gravitational loads are subtracted from the origi-
nal recovered intrinsic force vector (6) at each time step, to give gravity-adjusted
instrinsic forces f ′i , as follows.

f ′i =
[
K +

γ

βΔt
C +

1
βΔt2

M
]
ui+1 − Mai − Cbi − g (10)

Trivially, the original motion is recovered if the gravitational loads are applied
subsequently, unchanged, as extrinsic forces. However, it is now possible to rotate
the finite element mesh and extrinsic gravitational loads, in an equal and opposite
fashion, in order to simulate a change in patient orientation. This way, gravity
will always take effect in the correct direction.

3 Results

The force recovery and resolution techniques were tested with data taken from
scans of a beating heart phantom, using a simple linear elastic tissue model. The
Chamberlain Group CABG phantom, illustrated in figure 2 (left), was scanned
at 54 bpm with a Philips 64-slice CT scanner, producing 10 uniformly-spaced
phases. The first of these was manually segmented and converted into a tetrahe-
dral mesh of 709 elements and 747 degrees of freedom using the SimBio-Vgrid
[13] mesh generator. Figure 2 (right) shows the interaction between the resulting
mesh and a virtual tool. The Image Registration Toolkit [14, 15] was then used
to create a sequence of 3D tensor product cubic B-spline deformations, mapping
the initial mesh onto each phase in turn.

Fig. 2. Beating heart phantom and tetrahedral FEM mesh with virtual tool
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To ensure stability of the FEM simulation by making the second time derivatives
continuous, it was necessary to fit 1D cubic B-splines over time through each
node. The basis functions were arranged in such a way that smoothness is main-
tained across the coincident start and end of the cardiac cycle. Six knots were
used in this instance, implying one fewer basis functions to cover the entire cycle.
Figure 3 (left) shows the passage of a typical node in the phantom mesh before
and after cyclic smoothing, and Figure 3 (right) shows at each phase the max-
imum and mean errors resulting from the smoothing process. Their magnitude
can be seen to be perfectly acceptable for image-guidance applications.

Fig. 3. Cyclic deformation smoothing and error measurements

Fig. 4. Combined tool-tissue interactions

3.1 Simulation parameters

The following constants were chosen to approximate the material properties of
the beating heart phantom: Young’s modulus E = 7.1E + 04Pa; Poisson’s ratio
ν = 0.285; material density ρ = 30.0 kg/m3; Rayleigh mass damping coefficient
αm = 3.755E+05 and stiffness damping coefficient αk = 0; and acceleration
due to gravity g = 9.80665 m/s2. The equations of motion were integrated using
a time step Δt = 0.002314815 seconds. The simulation uses an efficient sparse
matrix implementation which makes real time interaction possible.
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3.2 Tool-Tissue Interactions

The proprietary software written to test force recovery and resolution also simu-
lates one or more virtual da Vinci endowrist instruments. Constrained by virtual
trocar ports, each instrument has six degrees of freedom, and is controlled by
a SensAble PHANTOM Omni haptic device. Figure 4 shows the displacements
of a typical surface node close to the point of instrument contact, and the mag-
nitude of the applied force. It is evident that the cyclic motion of the beating
heart is combined with the inward motion induced by the instrument. Once the
instrument is moved away from the surface, the mesh can be seen to relax into
its original cyclic motion. The relative position of the node, and indeed the en-
tire mesh, changes since there are no restrained degrees of freedom. The haptic
device applies force feedback to the human operator and indeed, one can feel the
pulsatile motion of the heart when contact is made with its surface. As such,
the applied force magnitude exhibits an irregular increase and decrease itself in
response to variations in the operator’s application of the instrument.

3.3 Insufflation and Gravitational Effects

Figure 5 (left) shows the effect of an increase in insufflation gauge pressure.
This results in an overall shrinking of the mesh, illustrated by a reduction in
the distance between a typical node and the mesh centre. Observing the motion
of another surface mesh node, figure 5 (right) shows how the intrinsic motion
changes as the direction of gravity is rotated about the Z axis, increasing linearly
from zero to some exaggerated target angle. Displacements in the Z direction
remain unchanged whilst the other directions adapt slowly to the simulated
change in patient position. Together with a detailed finite element model of the
whole thorax including diaphragm and lungs, this is an important step towards
accurate simulation of left lung deflation and its effect on heart motion.

Fig. 5. Simulated insufflation and effects due to gravity direction change
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4 Conclusion

This paper describes a novel technique for constructing finite element simulations
with cyclical intrinsic motion recovered from 4D tomographic scan data, whereby
extrinsic forces can be combined to produce realistic composite behaviour. In
the context of an augmented reality application of the da Vinci robotic tele-
manipulator system for TECAB, it offers several means by which the accuracy
of overlay registration can be improved. Tool-tissue interactions, insufflation and
effects due to gravity and change in patient orientation are combined with the
beating heart. The technique is clearly also applicable to the field of surgical
simulation and others where, for example, respiratory motion and patient incli-
nation must be combined to produce accurate organ deformations, such as the
treatment of liver tumours using robot-assisted RF ablation. Overall accuracy
and validity of the technique will be determined by comparing simulation results
to spatial data recovered from stereo endoscopic video sequences and recordings
of effector positions.

It is also planned to extend the simulation to include non-linear finite element
models. Clearly, the linear elastic model defined in (1) is not appropriate if
the technique were applied to real patient data, but it suffices to illustrate the
central ideas of force recovery and resolution in the heart phantom case. When
non-linearities are present, the discretised equations of motion (2) are no longer
applicable. Instead, an iterative scheme, such as the Newton-Raphson method
for non-linear systems of equations, can be used to solve for the forces required
to produce known displacements. Typically, the forward integration will also
involve an iterative process [16], ensuring that dynamic equilibrium is restored
at each simulation time step. At each such iteration, the internal forces and
modified stiffness are re-calculated. Further refinements to the simulation will
be made by introducing unequal weights and anisotropy during the local force
resolution process, and by allowing weight interpolation over time, such that the
frequency of cyclic motion can be modified.
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Abstract. Heart disease can negatively influence cardiac pump func-
tion. To assess cardiac tissue function, a method based on classical opti-
cal flow theory applied in the spectral domain is presented. Assumption
of pixel intensity conservation is replaced by assumption of spatial phase
conservation. Simultaneous application to two independent observations
of the same optical flow field removes the necessity of additional con-
straints (i.e. flow field smoothness, normal flow) to solve the optical flow
constraint equation (OFCE). Using the 1st order Taylor expansion of
the OFCE, our system yields not only pixel displacements, but also the
1st order differential structure of the displacements (i.e. strains), which
otherwise should be calculated as a post-processing step.
Operation at pixel level obviates the need for interpolation of tag lines or
sparse flow field representation. Experiments show coherent flow fields of
a human cardiac systole. Comparison with velocity encoded MRI shows
a good resemblance.

Key words: optical flow, tracking, heart, tagging, strain, HARP

1 Introduction

Many cardiac diseases have a large influence on the pump function of the cardiac
left ventricle (LV). Valvular aorta stenosis, e.g., impedes blood flow from the left
ventricle through the aortic valve into the aorta, thus serving as an obstruc-
tion. Furthermore, aorta stenosis influences systolic torsion and diastolic apical
untwisting [1].
Measurements of muscle function are often used as prognostic indicator of success
or failure of therapy. SV is one of the well-known indicators used in clinical
practice for both diagnostic and prognostic purposes. Ejection fraction (EF),
which is SV divided by end-diastolic volume, is the most often used functional
parameter in both experimental and clinical studies. Due to a high afterload in
aortic stenosis, EF may be reduced even while tissue function may be relatively
� The Netherlands Organisation for Scientific Research (NWO) is gratefully acknowl-

edged for financial support.
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normal [2]. This shows that EF as an indirect measure of tissue function may be
misleading. Therefore, it would be better to measure tissue function itself.
A method is required that assesses cardiac tissue function both globally and lo-
cally and provides new means and criteria for assessment of mechanical dysfunc-
tion and to monitor response to treatment [3]. We propose to estimate cardiac
function from tagged MR [4, 5] spatiotemporal image sequences by classification
of the LV contraction pattern. Towards such an approach, we present a purely
evidence based multiscale method for tissue function assessment from multiple
tagged image sequences using neither interpolation of tags [6] or flow field [7],
nor smoothness assumptions. Our approach follows the original rationale of Horn
and Schunck [8], and extended to a multiscale framework by Florack et al. [9],
Niessen et al. [10, 11] and Suinesiaputra et al. [12], and of spectral filtering in-
troduced by Osman et al. [13]. As opposed to previous methods, however, we
do not invoke any smoothness assumption or other hypothesis for resolving the
“aperture problem” (intrinsic flow indeterminacy), but instead base ourselves
entirely on data evidence.
In Section 2, we present general background information. In Section 3, we intro-
duce optical flow and the way it is used in our proposed method. In Section 3.2,
we explain our method, and in Section 4 we show some experimental results.
Finally, in Section 5 we discuss results and future directions.

2 Background

2.1 Magnetic Resonance Tagging

In the late 1980s, Zerhouni et al. introduced a method (“tagging”) for visualising
intramyocardial motion by MR imaging [14], later refined to (3D) (C)SPAMM [4,
5, 15]. The HARP technique, which employs tagging combined with spectral fil-
tering in k-space [13, 16], overcomes tag fading by directly measuring phase in-
formation (Fig. 1(b)) of the MR signal (Fig. 1(a)). In 1999, another phase-based
method for imaging myocardial function, called DENSE was introduced [17]. The
principles behind HARP and DENSE, however, are the same [18]. A third well-
known imaging protocol for dynamic analysis is Phase Constrast MRI (PCMRI)
[19]. This technique directly measures velocity, which has to be integrated over
time and spatially differentiated to obtain strains, which is far from trivial due
to a limited temporal resolution. Moreover, PCMRI is subject to velocity errors,
which propagate during displacement and strain analysis. For a review of motion
analysis MRI protocols, cf. [18].
Patterns created with (C)SPAMM are inherent in the tissue, allowing analysis
of the local dynamic behaviour of and strains in the LV, while imaging of the
cardiac surfaces focuses on wall thickening. Strain analysis is superior to wall
thickening analysis to detect wall motion abnormalities [20], since surface-based
approaches are unable to display disturbances in, e.g., twisting during contrac-
tion and relaxation, which have been identified as early signs in pathologies [21].
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Fig. 1. Left: vertically lined tagged image. Middle: Harmonic phase (HARP) image.
Right: Sine of the HARP image.

2.2 Tag Tracking

Tracking with Optical Flow Tracking tags with optical flow methods has
been presented before. Niessen et al. [10, 11]used a canine heart from MR cine im-
ages and Suinesiaputra et al. [12] tracked human hearts using grid tagging. Both
applied the multiscale generalisation [9] of the OFCE by Horn and Schunck [8].
This method yields one equation and two unknowns in the zeroth-order ap-
proximation and four equations with eight unknowns in 1st-order approxima-
tion (Sec 3.1). To solve for all unknowns an additional constraint was required.
Suinesiaputra et al. formalized the fact that flow components tangential to iso-
surfaces (“tangential flow”) cannot be retrieved from data evidence in a “normal
flow constraint”. Constraining the flow to underlying image structure, the cal-

culated optical flow does not necessarily correspond to the true optical flow.
Dougherty et al. [22] also applied optical flow theory to analyze cardiac motion.
They estimate global and local motion in a coarse-to-fine model-based technique.
This technique encompasses a Laplacian filter to compensate for intensity and
contrast loss in myocardial tags which violate the basic assumption of constant
point brightness in optical flow techniques. This technique was compared with a
semi-automatic method based on tracking individual tag intersection points [23].
The tag intersection points were found by manually thresholding the normalized
cross-correlation result of the tagged MR image with a template of an idealized
tag intersection, and served as input to an interactive active contour model.
This technique yields the optical flow field at a sparse set of points in the image
sequence, necessitating an interpolation step to obtain a dense field. Prince and
McVeigh [24] developed an optical flow based method which requires extensive
prior knowledge of the relaxation times T1, T2 and the proton density D0 of the
myocardium. The adaptation of this technique by Gupta and Prince [25] still
requires knowledge of T1 over the image domain.

Tracking with Harmonic Phase (HARP) A different tracking method
based on filtering in the Fourier domain (or k-space) is the Harmonic Phase
(HARP) technique [13]. HARP involves spectral bandpass filtering and subse-
quently tracking phases in the angle image of the inverse Fourier transformed
filter result. The HARP method serves as a basis for our optical flow based
tracking technique, and is therefore further explained in Section 3.
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3 Methods
3.1 Optical Flow

The classical approach to optical flow extraction [8] departs from an optical flow
constraint equation (OFCE) that is intrinsically underdetermined, since flow
components tangential to iso-surfaces (“tangential flow”) cannot be retrieved
from data evidence. This indeterminacy is commonly referred to as the “aper-
ture problem”. ‘Normal flow”, obtained by imposing the additional constraint
that tangential flow vanishes identically, is useful in certain applications, e.g. for
explaining the change of brightness over time per se, i.e. without the need to as-
sign significance to point-to-point correspondences. However, as a representation
of an underlying physical motion field normal flow is of little value.
Our goal is to extract the physically meaningful motion field for the LV contrac-
tion pattern.The usual way to circumvent the aperture problem is to complement
data evidence with prior knowledge, or by stipulating some hypothesis about the
true motion field. The former type of knowledge is rarely at hand, making the
latter the typical ploy in practice. It usually assumes the form of a regularity
or smoothness constraint. The rationale is that, due to inertia and coherence of
physical objects, physical motion fields tend to be smooth. However, it is clear
that there is no guarantee that a regularized solution is everywhere close to the
underlying physical motion field. In fact, if the physical motion field exhibits
strong variations at some locations,these will not be retrieved correctly, as they
are precluded a priori. We therefore aim for a regularisation free solution, but
one that is not hampered by missing data evidence (aperture problem).
Florack et al. [9], Niessen et al. [10, 11] and Suinesiaputra et al. [12] have pro-
posed a multiscale generalisation of the classical Horn & Schunck’s OFCE [8],
emphasizing the intrinsic aspects. By imposing conditions reflecting known facts
about simulated object/scene dynamics (using the standard “Translating” and
“Diverging Tree” benchmark sequences) they were able to obtain very good per-
formance (relative to standard error measures proposed by Barron et al. [26]) by
virtue of exploiting the spatial and temporal scale degrees of freedom (d.o.f.s)
of (Gaussian) derivative filters. The weakness of the proposed method is it only
improves the way of handling the intrinsic d.o.f.s of the OFCE by incorporating
scale in a slick way, but it does not handle the aperture problem in a realistic
way. As a result, today’s methods of choice for optical flow extraction mostly
follow the regularisation rationale, indeed usually one’s only option. For a state-
of-the-art algorithm, cf. Brox et al. Bruhn et al. and Weickert et al. [27–29].
Nearly all existing paradigms use extrinsic models, i.e. priors complementing
the intrinsic d.o.f.s captured by data evidence. As a result performance relies
crucially on inherently uncertain assumptions, such as the validity of smoothness.
It would be desirable if the missing d.o.f.’s (“tangential flow”, say) could be
retrieved by adding further intrinsic evidence to the existing evidence, obviating
the need for regularisation altogether. This is possible if one is in possession of
a second, independent recording of the same spatiotemporal region of interest.
In the present case this can be achieved with the help of suitably chosen MR
tagging patterns.
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Following this new rationale we exploit the strength of the multiscale OFCE
by Florack et al. [9], while at the same time removing its shortcomings. The
operational scheme for optical flow extraction makes use of a local polynomial
expansion of the flow field (at each point). Here we take a 1st order scheme, in
2+1 spacetime dimensions,

U(x, y, t) = u+ uxx+ uyy+ utt respectively V (x, y, t) = v+ vxx+ vyy+ vtt ,

in which u, ux, uy, ut, v, vx, vy, vt are eight local parameters of the horizontal, re-
spectively vertical local optical flow field approximation U(x, y, t) and V (x, y, t).
We furthermore assume that the source data constitute a scalar field (justified
below), and use the appropriate paradigm for this case.
Let f be shorthand for f(x, y, t;σ, τ), the scalar spatiotemporal image sequence
as a function of position (x, y), time t, isotropic spatial scale σ>0, and tempo-
ral scale τ > 0. We denote its partial derivatives with respect to x, y, and t by
self-explanatory subscripts. These are obtained by convolving the raw image se-
quence f0(x, y, t)=f(x, y, t; 0, 0) with a corresponding derivative of a normalized
Gaussian,

φ(x, y, t;σ, τ) =
1

2πσ2

1
√

2πτ2
exp

[
−

x2 + y2

2σ2
−

t2

2τ2

]
.

The relevant 1st order OFCE is then given by the following linear system for
the unknowns u, ux, uy, ut, v, vx, vy, vt. Collecting the unknowns in an 8-entry
column vector v, and indicating the 4×8 coefficient matrix by A, and the inho-
mogeneous term by the 4-entry column vector a, we have

Av = a , (1)

A =2
664

fx fy fxtτ
2 fytτ

2 fxxσ2 fxyσ2 fxyσ2 fyyσ2

fxt fyt fx+fxttτ
2 fy+fyttτ

2 fxxtσ
2 fxytσ

2 fxytσ
2 fyytσ

2

fxx fxy fxxtτ
2 fxytτ

2 fx+fxxxσ2 fy+fxxyσ2 fxxyσ2 fxyyσ2

fxy fyy fxytτ
2 fyytτ

2 fxxyσ2 fxyyσ2 fx+fxyyσ2 fy+fyyyσ2

3
775 ,

v =
[
u v ut vt ux vx uy vy

]T and a = −
[
ft ftt fxt fyt

]T
.

For a detailed description and derivation of the general scheme for arbitrary
dimensions and approximation orders, and including the case of density images,
we refer to the literature, loc. cit.

Note that Eq. (1) captures only half3 of the required d.o.f.s (as it should), since
no extrinsic model has been invoked. If we are in possession of a second image
sequence g of the same spatiotemporal region of interest, then in addition to
Eq. (1) we have

Bv = b , (2)
3 In general: codimension of generic isosurface divided by spatial dimension.
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with B and b the g-analogues of A respectively a. If the sequences f and g are
truly independent, then (by definition) the combined system

Cv = c , (3)

in which

C =
[
A
B

]
and c =

[
a
b

]
,

is non-singular, and establishes a unique solution v based on data evidence only.

3.2 Applying OFCE to two image sequences simultaneously

This method utilizes the fact that at any point in the tagging pattern, besides
an intensity tissue has a spatial phase. It is this spatial phase information from
two perpendicularly tagged image sequences that is used as input to our intrinsic
optical flow method. Schematically, our method is as follows:

1. Acquire two tagged image series with mutually perpendicular tag lines.
2. Calculate the Harmonic Phase representation [13] of the line tagged image

sequences. To avoid spatial discontinuities in the input sequences, the sine
function is applied to the HARP images (see Fig. 1(c)) before they are put
into the solver of system (3). Note that the system (3) is solved for every
pixel in every frame of the image sequence, yielding a dense optical flow field,
removing the requirement of interpolation. After the sine function is applied
to the HARP sequences, the resulting sequences are denoted f0(x, y, t) and
g0(x, y, t) respectively (see Section 3.1).

3. Evaluate for every pixel at which combination of scales σf , σg, and τ the
combined system (3) is most stable, i.e. yields the most reliable solution.
This is done by application of the Frobenius norm [9–11] to system (3).

4. Solve systems (1), (2) for f and g simultaneously, and thus solve system (3)

We assume that the source data constitute a scalar field, because the intensities
in the input sequences (the HARP images) represent a spatial phase, contrary
to the MR images themselves which represent an accumulation of magnetisation
over a volume, and thus constitute a density signal. Therefore, it is justified to
apply the scalar paradigm presented in Section 3.1.

4 Experiments and examples

To demonstrate our method it was applied to a set of spatiotemporal images of a
tagged human heart (Fig. 2). For comparison, a PCMRI acquisition of the same
heart was performed in the same session, and with the same image orientations.
Figure 2 shows four systolic frames of the respective acquisitions with the cal-
culated flow field superposed in the left column. In the right column, the mag-
nitudes plots of the corresponding time frames of the PCMRI acquisition are
shown, on which the extracted velocities from the PCMRI phase equivalents were
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superposed. In the vector plots the directions of the flows are color-encoded for
more intuitive perception. This facilitates comparison between the left and right
columns. The backgrounds in the left column are obtained by multiplication
of f0(x, y, t) and g0(x, y, t). The backgrounds and the flow fields were masked
based on the magnitude of the complex images computed from the tagged im-
age sequences [13]. The masks in the right column were based on the PCMRI
magnitude acquisitions.
Since the input functions f(x, y, t, σf , τ) and g(x, y, t, σg, τ) depend on the spa-
tiotemporal scales σf , σg and τ , the appropriate scales have to be selected. In the
results presented here, the best scale combinations were automatically selected
(for each pixel separately) from 192 combinations of the following ranges (note
that the logarithm of the scales have fixed increments):

– σf , σg ∈ {1.000, 1.219, 1.486, 1.811, 2.208, 2.692, 3.281, 4.000}
– τ ∈ {1.000, 1.414, 2.000}

5 Discussion

Often a smoothness constraint is employed to solve the optical flow problem.
This is also the case in many techniques that track only the tag stripes or
intersections of perpendicular tag stripes. By interpolation of the found tags, so-
called “virtual tags” are defined, by means of which an initially sparse flow field
is densified [6]. In our method, from the very beginning, the optical flow field is
regarded at pixel resolution, and thus our method does not require smoothness
constraints [8] or flow field interpolation [7] per se.
The size of the spectral filter used in the HARP technique, determines the re-
maining resolution in the spatial domain. By employing a 1-1 CSPAMM proce-
dure, the central peak in k-space is cancelled, allowing for a larger filter, yielding
a higher resolution of the flow field [30].
Many methods require regularisation in some sense. Most often regularisation is
achieved by application of spline-based interpolation [23, 24]. In the results we
have achieved thus far, regularisation has not been employed.
Because we apply our optical flow technique in the spectral domain, we are not
restricted by the constant pixel brightness assumption, which is the basis of the
optical flow theory in Section 3.1. Thus, the constant brightness assumption
is replaced by a constant phase assumption, which seems to be more valid.
Intensity modeling requiring knowledge of T1 (and T2, D0) [24, 25] is therefore
not necessary in this method.
In this paper we focussed on the application of optical flow theory for tracking
cardiac motion from a combined system of equations constructed from two input
image sequences. We did not strive to present a full (quantitative) evaluation,
but instead focussed on the theory and a few illustrative examples. However, the
qualitative comparison to velocity-encoded MRI shows a striking resemblance
between flow fields.

Hans van Assen, Luc Florack, Avan Suinesiaputra, Jos Westenberg, and Bart ter Haar Romeny

90



8 H.C. van Assen et al.

Fig. 2. Flow field of a part of the systole of a human heart (short-axis). The left column
shows the flow field produced from the tagging sequences by our method, the right
column shows the corresponding frames from the PCMRI sequences. The direction of
the flow is color-encoded, i.e., homogeneous color means coherent flow field.
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The input “functions” f(x, y, t;σ, τ) and g(x, y, t;σ, τ) depend on the spatial and
temporal scales (σ,τ). Since the size of the tags can vary locally, a.o. due to con-
traction, automatic scale selection per point was employed using the Frobenius
norm. Also the “condition number” of the matrix C in (3) can possibly serve as
criterion for automatic scale selection. More research towards the selected scales
and the variation of chosen scales in local neighborhoods should be conducted.
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Abstract. This paper presents the mechanics of Normal Pressure 
Hydrocephalus (NPH) growth using a computational approach. We generated a 
generic 3-D mesh of a healthy human brain and treated the brain parenchyma as 
single and biphasic continuum with non-linear constitutive law undergoing 
finite deformations. Contact boundary conditions constrained the brain which is 
enclosed in a skull. We loaded the brain using transmantle pressure difference. 
Non-linear, implicit, Finite-Element (FE) procedures in time domain were used 
to obtain the deformations for the brain and ventricles. We propose that for 
modelling NPH, there is no significant advantage gained by using biphasic 
continuum to model brain parenchyma and that single phase continuum is 
adequate. We obtained almost equal ventricular volume for both single and 
biphasic treatment of brain parenchyma under same loading condition. The use 
of single phase continuum simplified the mathematical description for the 
model and resulted in large saving of computational time. 

1   Introduction 

Overlap of symptoms and diagnostic findings between Normal Pressure 
Hydrocephalus (NPH) and other neurodegenerative diseases (Alzheimer’s etc) makes 
diagnosis of NPH a reoccurring problem for clinicians. Hakim and Adams [1] were 
the first to identify the condition of NPH. Currently, clinical and diagnostic findings 
of neurosurgeons in combination with engineering principles enhance the diagnosis of 
NPH [2, 3, 4 and 5], but these approaches offer no insight into NPH growth 
mechanics. 

Hakim [6] proposed a “sponge” type model of brain parenchyma for NPH growth 
but without any mathematical formulations. Nagashima et al. [7] and Péna et al. [8] 
utilised coupled pore fluid diffusion and stress analysis (biphasic approach) for a 
linear elastic model of brain parenchyma (porous medium) undergoing infinitesimal 
deformations on a 2-D horizontal brain slice obtained from a brain atlas. Kaczmarek 
et al [9] used finite deformation biphasic theory on simplified brain geometry 
(cylindrical) and obtained an analytical solution. Taylor and Miller [10] utilised 
reassessed brain parenchyma elastic modulus and finite deformation biphasic theory 
on realistic 2-D brain geometry. Apart from NPH analysis, Miga et al. [11], Miga et 
al. [12], Paulsen et al. [13], Platenik et al. [14] and Lunn et al. [15] used biphasic 
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approach for intra-operative image registration of brain deformation during 
neurosurgery. They treated brain parenchyma as linear elastic and used infinitesimal 
deformation theory [11, 12, 13, 14 and 15]. 

In all these works [7, 8, 9, 10, 11, 12, 13, 14 and 15], the brain parenchyma was 
treated as linear elastic. The assumption regarding infinitesimal deformation [7, 8, 11, 
12, 13 14 and 15] was violated during NPH formation and brain deformation during 
neurosurgery, due to large deformations in the brain parenchyma. For correct 
understanding of NPH growth mechanics, finite deformation formulations and 
constitutive law (e.g. hyperelastic) which can handle large strains (> 20%) 
encountered during NPH is required. The outer surface of the brain parenchyma was 
assumed to be fixed to the skull [7, 8, 9 and 10]. As a result, displacement of the brain 
outer surface was not possible. This is an oversimplification of the brain-skull 
interaction. For complete understanding of NPH, proper boundary conditions between 
the brain and the skull should be included in the model [16]. We addressed the 
deficiencies pointed above by using fully non-linear (geometric, material and 
boundary) model for our simulations. To the best of our knowledge, this is the first 3-
D, non-linear model investigating NPH growth mechanics. 

Section 2 includes descriptions of the generic brain mesh as well as loading and 
boundary conditions for both single and biphasic cases used in our simulation. 
Element types and formulations for single and biphasic continuum is given in section 
3. We detail the results in section 4. Comprehensive discussions and summary of our 
main findings is in section 5. 

2   Biomechanical Model 

2.1   Brain Mesh 

The brain mesh is shown in Fig 1.  We created the generic mesh of the healthy human 
brain by modifying person specific brain mesh [16] using Hypermesh (Altair 
Engineering, USA) pre-processing software. Table 1 presents the values for brain and 
ventricular volume of a healthy human brain [17]. Brain and ventricular volumes in 
our mesh were consistent with the values given in Table 1. As the brain is 
approximately symmetrical, half of the brain was simulated. Ventricular volume for a 
healthy human in our simulations was 14cm3. NPH was deemed developed when 
ventricular volume increased from 14cm3 to more than 58 cm3 (Table 1). 

Table 1. Brain and Ventricular Volumes for Healthy and NPH Cases (adapted from Matsumae 
et al. [17]) 

Case Brain Volume 
(cubic cm) 

Ventricular 
Volume 

(cubic cm) 
Healthy Brain 1188±104 27±10 

NPH 1163±129 116±42 
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2.1.1   Modified Hyperelastic Material Parameters 
The stress-strain behaviour of the brain parenchyma is non-linear with stiffness in 
compression significantly higher than tension with strong stress-strain rate 
dependency [18, 19]. To account for these complexities in the brain parenchyma, we 
chose the hyper-viscoelastic constitutive model proposed by Miller and Chinzei [19]. 

The time required for NPH growth is relatively long (typically 4 days) [7] when 
compared to surgical interventions and loading of the brain occurs very slowly. Thus, 
the strain rate dependency of the brain parenchyma disappeared [10]. Hence, the brain 
parenchyma was modelled as hyperelastic (Ogden form [20]) given by: 

)3(
2

W 3212
−λ+λ+λ

α

μ= ααα  
(1) 

where, W is the potential function, �i’s are the principal stretches, � is the relaxed 
shear modulus and � is the material coefficient which can assume any real value 
without any restrictions. The value � was 155.77 Pa [10] and the value of � was -4.7 
[10]. We considered the brain parenchyma to be homogenous and isotropic for 
simulation purposes [21] as the brain tissue does not exhibit directional structure, 
unless the behaviour of very small tissue specimens is of interest [22]. 

 
 

 

Fig. 1. Brain geometry, pressure loading and applied boundary conditions 

2.1.1.1   Biphasic Continuum 
Brain was considered to be a sponge like structure with the solid matrix 
corresponding to neurons and neuroglia and voids being extracellular space [1, 6] 
occupied by CSF. This is referred to as biphasic [7, 8, 9, 10, 11, 12, 13, 14, 15 and 22] 
continuum because of presence of two phases: brain parenchyma (solid or porous 
phase) and CSF (fluid phase). To understand the interaction between brain 
parenchyma and CSF when loaded by a given transmantle pressure difference, we 
performed a coupled pore fluid diffusion and stress analysis. The reader may refer to 

Skull Plane 1 

Bottom nodes  
constrained 

Brain 
Parenchyma 

Transmantle 
Pressure Difference 

Ptrans 

Ventricles 
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the works of Nagashima et al. [7], Miller [23], Biot [24], and Bowen [25] for detailed 
discussions on the mathematical treatment of biphasic continuum. 

In our model, brain parenchyma (solid phase) had a Poisson’s ratio (�) of 0.35 [7, 
8, 9, 10, and 22] with relaxed hyperelastic material properties (section 2.1.1), initial 
void ratio of 0.2 [7, 26] and permeability of 1.59x10-7 m/sec [9]. It was fully saturated 
with CSF. CSF (fluid phase) was incompressible, non-viscous with mechanical 
properties of water. 

2.1.1.2 Single Phase Continuum 
Due to long development time for NPH, there existed possibility of Cerebrospinal 
Fluid (CSF) to be absorbed or evacuated in the brain parenchyma, resulting in CSF 
flow within it and change in brain and ventricular volume. We treated the brain 
parenchyma as compressible single phase continuum with non-linear constitutive law 
[19] (generalisation of Ogden rubber [23]), relaxed hyperelastic shear modulus 
(section 2.1.1) and a low Poisson’s ratio of 0.35 [7, 8, 9, 10, and 22] and investigated 
this effect of compressibility. 

2.2   Loading 
Load was a transmantle pressure difference (Ptrans) in form of pressure on the 
ventricular surfaces as shown in Fig 1. There was no pressure acting on the outer 
surface of the brain. It is a widely held view that transmantle pressure difference 
(Ptrans) of 1mm of Hg (133.416 Pa) produced the clinical condition of NPH [27, 28] 
and the same was applied to the ventricular surface to investigate this claim. 

2.2.1   Biphasic Continuum 
Even though material strain rate effects were absent due to use of hyperelastic 
constitutive law for the brain parenchyma, rate effects were present because of 
relative motion between brain parenchyma (solid phase) and CSF (fluid phase). The 
time period of load application was of importance and transmantle pressure difference 
(Ptrans) was applied over the development time of NPH (4 days) using a polynomial 
which provided zero velocity and acceleration respectively at the beginning and end 
of the loading. 

2.2.2   Single Phase Continuum 
The time period of load application was not important as we seek a static solution for 
the single phase continuum and material strain rate effects were absent due to use of 
hyperelastic constitutive law for the brain parenchyma. Hence, time period of 
transmantle pressure difference (Ptrans) application was arbitrarily taken to be 10 
seconds. 

2.3   Boundary Conditions 
As the brain is approximately symmetrical about the mid-sagittal axis, half of the 
brain for both single and biphasic continuum was simulated. The nodes on plane 1 
(Fig 1) had symmetrical boundary conditions in YZ plane (no motion allowed for X 
translation) applied to them. As the brain was resting in the skull, we constrained the 
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brain bottom nodes in Y and Z translation (Fig 1). A skull enclosed the brain and 
frictionless, finite sliding; node-to-surface penalty contact between the brain and skull 
constrained the nodes on the brain outer surface. Following Wittek et al. [16], Sub-
Arachnoid’s Space (SAS) was accounted by a 3mm gap between the skull and the 
brain outer surface. 

2.3.1   Biphasic Continuum 
There exists a pressure gradient between the ventricles and Sub-Arachnoid’s Space 
(SAS) resulting in flow of CSF from ventricles to SAS. We set the pore pressure on 
the ventricular surface equal to the transmantle pressure difference (Ptrans) and 0 Pa on 
the outer surface of the brain and implemented this pressure gradient. 

3   Computational Model 

3.1   Brain Mesh 

3.1.1   Biphasic Continuum 
5858 porohyperelastic type C3D20PH (20 node triquadratic displacement, trilinear 
pore pressure, mixed formulation with linear pressure, pore pressure) [29] and 89 type 
C3D10H (10 node quadratic tetrahedron, mixed formulation with linear pressure, 
stress displacement) [29] elements discretised the brain parenchyma. We used mixed 
formulation quadratic tetrahedrons to complete the brick dominated mesh. Volumetric 
locking was not shown by both C3D20PH and C3D10H type elements. 

3.1.2   Single Phase Continuum 
The brain parenchyma consisted of 5858 type C3D20H (20 node quadratic brick, 
mixed formulation with linear pressure, stress displacement) [29] and 89 type 
C3D10H (10 node quadratic tetrahedron, mixed formulation with linear pressure, 
stress displacement) [29] elements. As mentioned earlier, we used mixed formulation 
quadratic tetrahedrons to complete the brick dominated mesh. Type C3D20H did not 
exhibit volumetric locking for incompressible/nearly incompressible continuum (e.g. 
brain). 

3.2   Skull 
The skull consisted of 1006 type R3D4 (4 node, bilinear quadrilateral, 3-D rigid) [29] 
elements. 

3.3   Finite Element Solver 
We obtained the solution for NPH growth model using ABAQUS/Standard (Abaqus 
Inc, Providence, Rhode Island, USA) non-linear finite element code 
(ABAQUS/Standard, 2004) [32]. The code accounted for geometric, constitutive and 
contact non-linearities. STATIC (fully non-linear, finite deformation) procedure 
obtained solution for single phase continuum case and SOILS (fully non-linear, finite 
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deformation, porohyperelastic) procedure gave solution for the biphasic continuum 
case. Wu et al. [30] showed the validity of SOILS procedure for hydrated biphasic 
tissues. 

4   Results 

Table 2 gives the summary of ventricular cavity volume produced due to application 
of transmantle pressure difference (Ptrans) of 1mm of Hg (133.416 Pa).  

Table 2. Volume of Ventricular Cavity Subjected to Transnamtle Pressure Difference (Ptrans) of 
1mm of Hg 

Case Poisson’s Ratio 
(�) 

Ventricular 
Volume (cm3) 

Single Phase 0.35 37.2 
Bi-Phase 0.35 36.6 

5   Discussions and Conclusions 

5.1   Ventricular Volume 
Application of 1mm of Hg pressure load to the ventricular surface produced almost 
equal ventricular cavity volumes for both single and biphasic models (Table 2). The 
brain parenchyma had a Poisson’s ratio (�) of 0.35 which lead to equally low (467.31 
Pa) bulk modulus for both cases. Due to this, the brain parenchyma was equally 
compressible for each. The long development time for NPH gave adequate time for 
the wetting fluid (liquid phase: CSF) to flow out of the interstitial voids and 
subsequently the pore pressure in the biphasic continuum which should have acted 
against the collapse of the solid phase (porous phase: brain parenchyma) did not do 
so. It could be convincingly argued from the results in Table 2 that there was no 
significant advantage gained by modelling brain parenchyma as a biphasic continuum 
for NPH. Furthermore, application of single phase model significantly reduced 
computational time. In this study, the computation time for single phase continuum 
was 160 minutes as compared to 1320 minutes for biphasic continuum. 

5.2   Transmantle Pressure Difference (Ptrans) required to produce NPH 
Penn et al. [27] and Czosnyka [28] reported that less than 1 mm of Hg (133.416 Pa) 
transmantle pressure difference was adequate to produce the condition of NPH. As 
mentioned earlier, NPH was deemed developed when ventricular volume increased 
from 14cm3 to more than 58 cm3 (section 2.1) [17]. Our modelling results (Table 2) 
clearly showed that ventricular volume was significantly less than 58 cm3 for both 
single and biphasic continuum when 1mm of Hg transmantle pressure difference 
(Ptrans) was applied to the ventricular surface. A higher pressure would be required to 
produce NPH. Thus, if hypothesis of mechanical causes of NPH needs to be 
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sustained, measurement of transmantle pressure difference (Ptrans) required to produce 
NPH should be reassessed. 
 

5.4   Conclusions 

Our work showed that application of 1mm of Hg transmantle pressure difference 
(Ptrans) resulted in almost equal ventricular volume for both single and biphasic 
models. Hence, we recommend use of single phase continuum model for brain 
parenchyma. The use of single phase continuum simplified the mathematical 
description of the system and lead to shorter computational time. According to our 
modelling results, 1 mm of Hg transmantle pressure difference (Ptrans) as reported by 
other authors was not adequate to produce NPH for both single and biphasic models 
This suggested that measurement of transmantle pressure difference (Ptrans) required 
for producing NPH needed reassessment, if hypothesis of mechanical causes of NPH 
was to be sustained. 
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Computational Biomechanics of the Breast: The
Importance of the Reference State
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Abstract. Breast cancer diagnosis involves the analysis and interpreta-
tion of images of the breast acquired using a variety of imaging modalities
such as ultrasound, x-ray mammography and magnetic resonance (MR).
Biomechanical models of the breast could help track tissue movement
and thereby assist in the interpretation of image patterns across multi-
ple imaging modalities. To this end, we are developing a software system
for the creation of subject-specific finite element models of the breast that
is systematically validated and optimised for use in the clinical setting.

In this paper, we describe a pilot study conducted in order to determine
the sensitivity of deformation predictions to the accuracy of the repre-
sentation of the reference state - an issue that has been overlooked in
previous studies. Predictions of the supine gravity-loaded configuration
of the breast of a volunteer from (i) a model that uses the prone gravity-
loaded state as the reference state (without applying initial stresses to
account for gravity), and (ii) a model that uses the breast configuration
in neutral buoyancy (immersed in water, assuming the density of the
breast is close to that of water) were compared.

The model using the prone gravity-loaded state as the reference configu-
ration predicted the supine gravity-loaded anterior surface configuration
with an RMS error of 11.4 mm, while the model using the neutral buoy-
ancy state as the reference configuration predicted the supine configura-
tion with an RMS error of 6.7 mm. These results indicate the selection of
a reference state of the breast is an important aspect in the development
of a reliable biomechanical model of the breast.

1 Introduction

Diagnostic procedures for breast cancer require interpretation of image patterns
by experienced clinicians. Recent studies have highlighted the importance of
experience and the examination of the breast using a variety of view-points for
intra-modality (x-ray cranio-caudal and medio-lateral, for example) as well as
inter-modality (x-ray, MRI, ultrasound) imaging [1, 2]. When imaging the breast
using these different modalities, it undergoes significant changes in shape, and
the displacements of the internal tissues are governed by the laws of physics.

Image registration techniques have been developed to account for these dis-
placements so that a clinician may more easily track and assess a specific region
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of tissue across different views. However, a number of these registration tech-
niques have traditionally based their computations on image-intensity statistics
such as mutual information and center of mass [3–5]. These techniques provide
transformations between images that are typically heuristic and can prove to be
unreliable.

For instance, Tanner et al [6] showed that the method proposed in [3] could be
improved by introducing a volume-preserving constraint. The need for volume-
preserving constraints indicated that non-rigid registration algorithms require
further validation to measure the accuracy of the transformations in captur-
ing the tissue deformations during imaging. An important aspect of these tech-
niques that had not been addressed until recently, is the physical-plausibility of
the transformations from these heuristic methods. Finite element models of the
breast are now being developed to provide physics-based constraints to image
registration algorithms [7–11]. Anatomically realistic biomechanical models of
the breast can potentially assist clinicians in diagnosing breast cancer by pro-
viding them with an image visualisation and patient data management system.

Due to the non-linear nature of large deformations that breast tissue undergo
during imaging procedures, large errors in the representation of a reference state
will lead to large errors in model predictions. While the senstivity of model pre-
dictions to the choice of boundary conditions and material parameters have been
addressed [9, 12], most studies have overlooked the importance of correctly rep-
resenting the reference state of the breast either: as stress-free in an unloaded
configuration; or as initially stressed in a known loaded configuration by pro-
viding the three-dimensional stress distribution. Researchers have typically used
a gravity-loaded configuration of the breast (such as the prone or supine con-
figuration) without providing information on the three-dimensional stresses in
the chosen state [10, 11]. To the authors’ knowledge, this is the first study that
investigates the use of the unloaded state as the reference configuration and the
sensitivity of model predictions to errors in the representation of the reference
state.

We first describe the methods used to create finite element models of the
breast. We then compare the predictions of a particular gravity-loaded configu-
ration of the breast of a volunteer from: (i) a biomechanical model that uses the
prone gravity-loaded configuration as the reference state (with no initial stresses
applied to account for gravity); and (ii) a biomechanical model that uses the
breast configuration in neutral buoyancy (immersed in water, thus removing the
effects of gravity loading) as the reference configuration.

2 Methods

We use our in-house modelling software, CMISS [13], to predict breast deforma-
tions. We use the finite element implementation of finite deformation elasticity
theory to model breast biomechanics. The reader is referred to standard texts
such as [14] and [15] for detailed descriptions of finite elasticity theory and the
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finite element method. The following sections briefly describe the methods we
use to generate and use subject-specific models of the breast.

2.1 Subject-specific breast geometry

We create subject-specific breast geometries by fitting faces of hexahedral, cubic-
Hermite elements to skin and muscle surface data sets that have been segmented
from MR images (see Fig. 1). The surfaces are fitted using a least squares ap-
proach, as described in [16]. The customisation process has been optimised to
run in an automatic fashion (with minimal user intervention) in order to gener-
ate breast models rapidly as would be required in a clinical setting. The reader
is directed to [7] and [17] for further details on the customisation process and its
performance with different breast shapes. We found that geometric finite element
models consisting of 24 tri-cubic Hermite elements (with 70 nodes and 1680 total
geometric degrees of freedom) fitted the models with an average overall RMS
error of 1.5 mm in representing the skin and muscle surfaces. For the mechanics
study presented here, the breast was assumed to be homogeneous after [8], thus
the geometrical model did not need to account for any structural differences
between the internal tissues.

(a) (b) (c) (d)

Fig. 1. Process of creating a subject-specific breast model. (a): Segmentation of tissue
boundaries. Green points represent the skin surface, and red points represent muscle
surface. (b): Dataset of skin (brown points), and muscle (red points) after segmenting
an entire MR image set. (c): Initial finite element model whose external faces are to
be fitted to the skin and muscle data sets. (d): Finite element model fitted to skin and
muscle surfaces.

2.2 Loading and boundary Conditions

Gravity loading was applied as a body force to the reference state of the model
(see Section 2.4 regarding the reference configuration). No initial stresses were
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applied to the prone gravity-loaded reference configuration to account for grav-
ity. For the purposes of this study, it was assumed that the breast tissues and
muscle were firmly attached to the rib cage, thus we applied fixed-displacement
boundary conditions at the posterior surface of the model. Previous models have
applied displacement boundary conditions to nodes across the entire skin surface
to ensure that they matched the outer shape of the breast in the deformed con-
figuration [9, 8, 10]. In contrast, the simulations in the present study are driven
by the gravity loading condition alone and thus provide a more robust way of
assessing the ability of the model to predict breast deformations.

2.3 Subject-specific constitutive parameters

The breast was assumed to be incompressible, homogeneous and isotropic af-
ter [8]. A number of experimental studies have been conducted to characterise
the mechanical behaviour of breast tissues [18, 19]. Previous researchers have
typically used the experimental data from the literature to fit the material con-
stant, c1, in the neo-Hookean constitutive equation W = c1(I1 − 3), where I1
is the first principal invariant of the Lagrangian strain tensor [14]. However, it
is well known from experiments that breast tissue mechanical properties vary
signicantly between subjects [20]. Therefore, it is likely to be important to fit
the material constant to each individual. We used our existing material param-
eter optimisation techniques [21] to estimate the value of c1 using the model
of the reference shape together with segmented data from images of different
gravity-loaded configurations.

2.4 The reference configuration and its importance

In this paper, we investigate the importance of the selection of a reference state of
the breast. We conducted this study by comparing the performances of a model
in predicting gravity-loaded configurations when two different representations of
the reference state of the breast were used.

The breast of a volunteer was imaged in four different configurations (see Fig.
2): (i) prone gravity-loaded (ii) supine gravity-loaded (iii) 11.5 degrees “head up”
(the volunteer is in a prone position with their back arched slightly upwards, such
that the head is raised.) (iv) prone and neutrally buoyant by assuming that the
density of the breast is close to that of water and submerging the breast in
water. For this last case, we assume that neutral buoyancy offsets the effects of
gravity, and more closely represents the stress-free reference configuration of the
breast. These images are the first to capture the unloaded shape of the breast
and allow us to quantify the importance of the representation of the reference
configuration on the accuracy of breast mechanics modelling using clinical data.
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(a)

(b)

(c)

(d)

Fig. 2. MR images of the breast in four different orientations: (a): prone gravity-loaded
configuration. (b): supine gravity-loaded configuration. (c): 11.5 degrees head up, where
the volunteer is in a prone position with their back arched slightly upwards, such
that the head is raised. (d): prone and neutrally buoyant configuration, obtained by
assuming that the density of the breast is close to that of water and submerging the
breast in water. Only the right breast was immersed in water in this study.
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With these image sets, two different sets of simulations were conducted and
are described as follows:

– Using the neutral buoyant configuration as the reference state: The
neutral buoyancy configuration was assumed to represent the reference state
of the breast and a model of this configuration was created using the cus-
tomisation process described in Section 2.1. The model was then subjected
to the “head up” gravity loading condition, and the value of c1 in the neo-
Hookean constitutive equation was estimated using non-linear optimisation,
with the objective of minimising the error in predicting breast deformation
in the “head up” orientation. The accuracy of the model prediction was
quantified by comparing the manually segmented head up configuration of
the breast skin to the model predicted anterior surface configuration. The
segmented points were projected (using a closest orthogonal projection ap-
proach [16]) onto the deformed surface of the model, and an RMS error of
the data projection vectors was calculated as a performance measure. The
supine configuration of the breast was then predicted using the optimal ma-
terial parameter value and compared to the skin data set that was segmented
from the supine configuration MR images.

– Using the prone gravity-loaded configuration as the reference state:
The same procedures for material parameter optimisation and supine config-
uration prediction were done as previously, but this time the prone gravity-
loaded configuration (with no initial stresses due to gravity applied) was
assumed to represent the reference state of the breast.

3 Results

3.1 The neutral buoyancy configuration

The geometric finite element model of the neutrally buoyant breast had an RMS
error of 0.78 mm for fitting the skin surface and 1.2 mm for fitting the muscle
surface of the volunteer’s breast.

Prior to characterising the mechanical properties of the breast, a displace-
ment solution mesh convergence analysis was performed for the mechanics model
by tracking material points in the model and recording their displacements for
successive mesh refinements during the convergence analysis. The Euclidean dis-
placements that each material point underwent during the deformation was cal-
culated for each mesh resolution. The RMS errors between successive refine-
ments were then recorded and the mesh corresponding to 112 tri-cubic Hermite
elements, as illustrated in Fig. 3 (216 nodes; 5184 geometric degrees of freedom),
was chosen as the most appropriate resolution for reliable model predictions.

This mesh was then used to characterise the mechanical behaviour of the
breast using the “head up” configuration and the material parameter optimisa-
tion technique estimated a value of c1 = 0.08 kPa for this model, which predicted
the “head up” configuration with an RMS error of 5.4 mm. The supine config-
uration was then predicted using this subject-specific model and had an RMS
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Fig. 3. Top: Convergence of RMS error in Euclidean displacements of selected mate-
rial points inside the fitted neutral buoyancy model with increasing mesh resolution.
Bottom: Chosen resolution for mechanics model predictions.

error of 6.7 mm in capturing the experimentally observed breast deformation
(see Fig. 4).

3.2 The prone gravity-loaded configuration

The geometric finite element model of the prone gravity-loaded breast had an
RMS error of 0.6 mm for fitting the skin surface and 1.0 mm for fitting the muscle
surface of the volunteer’s breast. The mesh was refined in the same manner as in
the neutral buoyancy simulation study to ensure reliable displacement converged
model predictions. This mesh was then used to characterise the mechanical be-
haviour of the breast using the “head up” configuration. The material parameter
optimisation technique estimated a value of c1 = 50 kPa for this model, which
predicted the “head up” configuration with an RMS error of 4.0 mm. The supine
configuration was then predicted using this subject-specific model and had an
RMS error of 11.4 mm in capturing the experimentally observed breast defor-
mation (see Fig. 5).
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(a) (b) (c)

Fig. 4. Model predictions of the breast configuration using the neutral buoyancy state
as the reference state. (a and b): Model prediction of the “head up” configuration
of the breast compared to the experimentally obtained skin configuration (blue dots)
segmented from MRI. (c): Model prediction of the supine configuration compared to
the experimentally obtained skin configuration (blue dots) segmented from MRI.

(a) (b) (c)

Fig. 5. Model predictions of the breast configuration using the prone gravity-loaded
state as the reference state. (a and b): Model prediction of the “head up” configuration
of the breast compared to the experimentally obtained skin configuration (blue dots)
segmented from MRI. (c): Model prediction of the supine configuration compared to
the experimentally obtained skin configuration (blue dots) segmented from MRI.
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4 Discussion and Conclusions

A comparison of the RMS errors for predicting the supine configuration using the
two different reference states (6.7 mm and 11.4 mm using neutrally buoyant and
prone gravity-loaded states, respectively) and the corresponding figures (Fig. 4
and Fig. 5) clearly show that the neutrally buoyant state provides more reliable
predictions of breast deformation. Note that this difference in model predictions
exists even after adjusting the material parameter c1 for each set of simulations
to remove any bias in results.

The assumption of material homogeneity and the fixed-displacement bound-
ary conditions at the posterior face could also be sources for errors in the model
predictions. However, it is clear from this study that by keeping the boundary
conditions and the material property assumptions the same and only changing
the reference configuration (using the neutral buoyancy configuration instead of
the prone gravity-loaded configuration), we reduce the RMS error significantly.
Fig. 4 shows that the model captures gross surface deformation characteristics
of both “head up” and supine configurations when using the neutral buoyancy
state compared to when using the prone gravity-loaded state.

These results indicate that the neutral buoyancy configuration is a good
representation of the reference state, but it is not necessarily the best. In future
studies we will investigate the validity of the assumption that the density of
the breast is close to that of water, along with techniques we have developed
to calculate the reference state without experimentally acquiring them in the
clinical setting [22]. The acquisition of a variety of breast configurations has
given us the ability to systematically validate our modelling techniques and
assumptions, and results such as Fig. 4 promise a reliable product that can
assist clinicians in combating breast cancer.
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Abstract. This paper presents a 2D strain estimation technique that
minimizes a cost function using dynamic programming (DP). The cost
function incorporates similarity of echo amplitudes and displacement
continuity. The method is capable of creating high quality elastograms
at the same resolution as the original RF data. Since tissue deformations
are smooth, the incorporation of the smoothness into the cost function
results in reduced decorrelation noise. Freehand palpation elastography
shows that the method is more robust to signal decorrelation (caused
by scatterer motion in high axial compression and non-axial motions of
the probe) compared to the correlation techniques. In-vitro experiments
depict that the method is able to detect small hard lesions. The method
is also suitable for real time elastography.

1 Introduction

Elastography, the display of the spatial variation of elastic modulus of tissue,
is an emerging medical imaging method with various medical applications such
as tumor detection [1] and ablation monitoring [2]. This paper focuses on static
elastography, a well known technique that applies quasi-static compression of
tissue and simultaneously images it with ultrasound. Through analysis of the
ultrasound images, tissue displacement map can be obtained [3, 4]. Typically,
a least squares technique is used to generate a low noise strain estimate (elas-
togram) from the displacement map.

Most elastography techniques estimate local displacements of tissue based on
correlation analysis of radio-frequency (RF) echoes. The resolution of these tech-
niques is low due to the size of the analysis window (approximately 80 samples or
3mm of tissue depth). Decreasing the window size does not improve elastogram
resolution as it increases the variance of the least square strain estimator [5].
Large windows are also required to avoid ambiguity in time delay estimation
especially when tracking a motion that exceeds a wavelength. At the same time,
significant decorrelation within large windows limits the tolerable level of com-
pression. To reduce signal decorrelation, stretching methods have been proposed
[6, 7]. Moreover, large errors due to false peaks and smaller errors due to jitter
[8] also limit the performance of correlation techniques.

� Supported by Breast Cancer Research Foundation and NSF EEC-9731748.
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In work closely related to this paper, Pellot-Barakat et al. [9] have proposed
minimizing an energy function that combines constraints of conservation of echo
amplitude and displacement continuity. An iterative multiscale approach is ap-
plied to minimize the energy function. The method is shown to generate accurate
low noise displacement fields. The computation time is reported to be more than
one minute for an elastogram that is less than half of the number of pixels in
the elastograms generated in this paper. Hence the method is not suitable for
real time elastography.

This paper describes an elastography technique based on dynamic program-
ming (DP) for image matching. DP is an efficient method of global optimization
[10] and has been extensively used in computer vision for finding correspon-
dences between two images acquired from two cameras in stereo [11], matching
deformable contours [12] and word recognition [13]. Devising a DP algorithm for
an optimization problem involves the following steps.

1. View the choice of a feasible solution as a sequence of decisions occurring in
stages so that the total cost is the sum of the costs of individual decisions.

2. Determine which decisions are possible at each stage.
3. Write a recursion on the optimal cost from the first stage to the final stage.

The remainder of this paper is summarized as follows. Section 2 discusses the
methodology and details of the implementation of 1D displacement estimation,
followed by subpixel and 2D displacement estimation. Experimental results on
phantoms and chicken breast are presented in Section 3. Section 4 concludes the
paper and presents the future work.

2 Dynamic Programming Elastography

2.1 1D displacement estimation

We first consider the problem of 1D strain estimation with 1D smoothness regu-
larization. Consider two echo signals g(i) and g′(i) corresponding to two A-lines1

acquired before and after compression (Figure 1 left), each signal sampled at
i = 1, 2 · · ·m. The distance between the two signals, Δ, can be quantified using
sum of absolute differences (SAD), which is computationally inexpensive:

Δ(i, d) = |g(i)− g′(i + d)| (1)

where dmin ≤ d ≤ dmax is the displacement at the sample i (Figure 1 left)
and dmin and dmax specify the allowed displacement. The smoothness of the
displacements is represented as S

S(di, di−1) = (di − di−1)
k (2)

1 Typical ultrasound image, B-mode image, is composed of multiple vertical lines
which are called A-lines.
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where di is the displacement at the sample i and di−1 is the displacement at the
sample i − 1 of the g(i). To avoid large jumps in the displacement estimation,
it can be shown that the S function should be strictly convex; we choose k = 2.
The cost function C at each point i and its associated displacement di is defined
as a recursive function

C(i, di) = min
di−1

{C(i− 1, di−1) + wS(di, di−1)}+Δ(i, di) (3)

To keep the weight parameter w independent of the ultrasound time gain com-
pensation (TGC), the Δ function was normalized by dividing it by its maximum
value. The w value was then varied until a visually good strain image was gen-
erated from phantom data and was kept constant for all experiments. Its value,
however, can be varied significantly without considerable effect on the strain im-
age. The values of the C function are stored in a (dmax − dmin + 1)×m matrix
(Figure 1 middle).

Generally, the optimum value of di−1 should be sought in the entire [dmin, dmax]
range. However, since the strain value is low in elastography, it is expected that
at each sample (among approximately 1000) of RF data, the change between
the displacement of a sample and its previous sample is not more than 1. There-
fore, the search range of optimum value for di−1 is limited to the three values of
di − 1, di and di + 1, which results in a significant gain in speed. The optimum
value of di−1 is also “memoized” [10] in a function M for later use.

M(i, di) = arg min
di−1

{C(i− 1, di−1) + wS(di, di−1)} (4)

The cost function C is calculated for i = 1 · · ·m. The minimum cost at i = m

gives the displacement of this point, which is traced back to i = 1 using the
memoization function to calculate all the displacements (D).

D(i) = argmin
di

{C(i, di)} , i = m

D(i) = M(i+ 1, D(i+ 1)), i = 1 · · ·m− 1 (5)

The displacement map of all A-lines is calculated using the same procedure
independently. In Section 2.3, we present a method for coupling adjacent A-
lines.

2.2 Subpixel displacement estimation

The displacement function D obtained in the previous section only takes integer
values. This means that at a typical 1% strain rate, the D function takes a
constant value for 99 samples followed by a changes of 1 in the 100th sample (on
average). A smooth strain map can be obtained from D using postprocessing
techniques like least squares, sacrificing image resolution. Here, we extend the
DP algorithm to refine the displacement estimate to subpixel level.

At each displacement estimate D(i), the pre-compression signal is inter-
polated around i and is upsampled in the [i− 1, i+ 1] interval by a factor

High Resolution Ultrasound Elastography: a Dynamic Programming Approach

115



i

d (displacement)

i

-1 -0.5  0  0.5  1

m

1

2

-1  0    1    2    3    4

d (displacement)

m

1

2

g(i)

dmin=-1

dmax=4

g’(i)

m

1

2

Fig. 1. In the left, values of g(i) and g′(i+d) corresponding to pre and post compression
RF data are compared. Middle shows the cost function C of equation 3, with white and
black representing low and high cost values respectively. In right, a new cost function
around the optimum path of the first stage’s cost function (the dashed line)is created,
giving a 1/γ = 1/2 pixel displacement accuracy.

of γ. The post-compression signal is also interpolated and upsampled in the
[i+D(i)− 1, i+D(i) + 1] interval by the same factor. The DP algorithm is
now performed on the two upsampled signals to achieve a subpixel displacement
estimation of 1/γ (Figure 1 right). Repeating the refinement procedure n times
results in a refinement factor of 1/γn.

2.3 2D displacement estimation

Until now, we have assumed pure axial compression independently estimated
on each A-line. However, lateral displacement in a soft material is inevitable
even when it undergoes pure axial compression. This displacement is related to
the Poisson’s ratio, which describes the material compressibility. Also, freehand
palpation is rarely a pure compression and thus also results in non-axial tissue
motion. As a result, a 2D smoothness regularization that considers the displace-
ments between adjacent A-lines is more natural. The DP algorithm of Section
2.1 is modified here to allow for 2D displacement estimation and 2D smoothness.

Assuming that ultrasound images consist of n A-lines, the distance between
the pre and post compression signals is

Δ(i, j, da, dl) =
∣∣gj(i)− g′

j+dl
(i+ da)

∣∣ (6)

where da,min ≤ da ≤ da,max and dl,min ≤ dl ≤ dl,max are the axial and lateral
displacements respectively and j = 1 · · ·n refers to jth A-line and i = 1 · · ·m.

S(dai
, dli , dai−1 , dli−1) = (dai

− dai−1)
2 + (dli − dli−1)

2 (7)
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Fig. 2. B-mode image (a) and elastograms obtained from freehand palpation of the
breast elastography phantom using cross correlation (b), 1D DP (c), 2D DP (d), cross
correlation with B-mode data (e) and 1D DP with B-mode data (f). The rectangles
show CNR calculation windows (t and b refer to target and background).

is the smoothness regularization with subscripts a and l referring to axial and
lateral. The cost function at the ith sample of the jth A-line is

Cj(da, dl, i) = min
δa,δl

{
Cj(δa, δl, i− 1) + Cj−1(δa, δl, i)

2
+ wS(da, dl, δa, δl)

}
+ Δ(da, dl, i) (8)

For memoization, δa and δl values that minimize the cost function are stored for
all da, dl and i values. The specific form of the cost function allows the calculation
of the displacement of each A-line using the cost values of the previous A-line.
The cost function of the jth line, Cj(da, dl, i), is calculated and is minimized,
resulting in its displacement map. The Cj(da, dl, i) function is also used for
the calculation of the next cost function Cj+1(da, dl, i) and is deleted from the
memory afterwards. This makes the amount of memory required to store the
cost function values independent of the number of A-lines.

3 Results and Discussion

RF data was acquired from an Antares Siemens system (Issaquah, WA) with a
7.27MHz linear array at a sampling rate of 40MHz. For comparison, strain im-
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ages were also calculated using a standard cross correlation method with a 3mm
window size and 80% overlap and a three point parabolic interpolation to find
the subsample location of the correlation peak [14, 15]. Linear regression with
a 30-sample window is performed on the displacement field to calculate strain.
Normalization was performed on the elastogram obtained from cross correlation
to eliminate outliers in the strain estimation (DP does not require normalization
because of global optimization). The signal to noise ratio (SNR) and contrast to
noise ratio (CNR) at the specified target and background windows were calcu-
lated according to [3] as follows

CNR =
C

N
=

√
2(s̄b − s̄t)2

σ2
b + σ2

t

, SNR =
s̄

σ
(9)

where s̄b and s̄t are the spatial strain average of the target and background, σ2
b

and σ2
t are the spatial strain variance of the target and background, and s̄ and σ

are the spatial average and variance of a window in the strain image respectively.
In the first experiment, a breast elastography phantom (CIRS, Norfolk, VA)

with a lesion of 10mm diameter and three times stiffer than the background
was palpated freehand. In consecutive images, where axial compression is low
and there is little non-axial motion, both methods perform well. However, as the
axial compression and non-axial motion increase, the DP method outperforms
the cross correlation method. Figures 2 (a)-(d) show the B-mode and three strain
images obtained with cross correlation, 1D DP and 2D DP. A high level of lateral
motion, approximately 2 A-lines, at the top left of the image and high axial strain
cause the cross correlation method to fail. The CNR value at the specified target
and background windows of the cross correlation method, 1D DP and 2D DP
were 2.12, 1.78 and 3.14 respectively. The CNR value only considers the strain
data in the three windows, which were carefully selected not to contain the
noisy parts of the cross correlation elastogram. Therefore, the cross correlation
technique gives a better CNR than the 1D DP although its strain image is noisier.

The performance of the DP method using B-mode data was also studied in
this experiment. To simulate B-mode data, the envelope of the RF data was
calculated using the Hilbert transform and the data was downsampled by a
factor of two. To generate elastograms with higher quality the B-mode data was
then upsampled by a factor of two for both cross correlation and DP. The Δ

estimate in equation 6 was slightly modified for the B-mode analysis, averaging
the differences in a 3x3 window around the sample i, j.

Δ(i, j, da, dl) =
1
9
Σs=1
s=−1Σ

t=1
t=−1

∣∣gj+t(i + s)− g′

j+t+dl
(i+ s+ d)

∣∣ (10)

Figures 2 (e) & (f) illustrate the elastograms obtained from B-mode data us-
ing cross correlation and 1D DP respectively showing that the 1D DP method
successfully detects the hard lesion.The CNR values for the cross correlation
technique and the 1D DP method are 0.16 and 1.02 respectively.

To examine the ability of the method to detect small hard targets, a needle
with the diameter of 1.27mm was inserted into chicken breast and the tissue
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Fig. 3. B-mode image (a) and elastograms obtained from freehand palpation of the in
vitro chicken breast with an inserted needle using cross correlation (b), and 2D DP
(c) . The needle is marked by a circle (appearing as an ellipse because of the scaling
ratios). The large strain value over the needle indicates stress concentration.

was palpated freehand. In Figure 3(a), the B-mode image of the tissue is shown;
the circle in the three images of Figure 3, whose center is located manually
from the B-mode image, marks the needle. Elastograms obtained using the cross
correlation and 2D DP techniques are shown in Figures 3 (b) & (c) respectively.
High values of strain (white regions) can be observed over the needle in the 2D
DP elastogram indicating stress concentration caused by the hard needle.
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Fig. 4. SNR values of the cross
correlation, 1D DP and 2D DP
techniques (dashed, dotted and
solid curves respectively).

A CIRS elasticity QA phantom with a
10mm diameter lesion and with the lesion
and background Young’s elasticity module
of 25 kPa and 33kPa respectively was com-
pressed in 24 steps (each step 0.005in). The
strain map between the first frame and all
other frame was calculated using the cross
correlation and DP methods. The SNR met-
ric was calculated in a small window located
at the top center of the image, where strain is
approximately constant. Figure 4 shows that
the DP methods have higher dynamic range,
an important elastography performance metric [3]. Since the 1D DP method cal-
culates the displacement at subpixel level, it gives higher SNR at small strains
than the 2D DP. This indicates the importance of subpixel displacement es-
timation for small compression. Implementation of the subpixel displacement
estimation for the 2D DP method is underway.

Substituting other computationally more expensive similarity measures like
sum of square difference and normalized cross correlation in the Δ function re-
sulted in no significant difference in the performance. Currently, an elastogram of
1000x100 pixels with maximum axial displacement of 10 samples (1% strain) and
maximum lateral displacement of ±1 A-lines takes 1.4sec to generate; 0.25sec
for calculating the Δ function and 1.1sec for the DP optimization (on a 3.8GHz
P4 CPU). Current implementation is in MATLAB with the Δ function calcu-
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lation and the DP optimization in mex functions. If the organ is palpated with
the probe, the displacement of the parts of the image close to the probe is very
small. Taking advantage of this will result in increasing the speed by a factor
of 2. Also a hierarchical search, similar to the subpixel displacement estimation
of Section 2.2, and exploiting hardware parallelism can significantly speed the
algorithm.

4 Conclusion and Future Work

An elastography algorithm that is significantly more robust to the signal decor-
relation (caused by scatterer motion in high axial compression, and lateral and
out of plane motions of the probe) than cross correlation techniqes is presented.
This allows higher axial compression, increasing the dynamic range of the elas-
togram which is crucial for lesion detection. The CNR and SNR metrics seem
to indicate that the regularization creates smooth elastograms while preserving
contrast. The regularization also does not appear to damage the ability of the
algorithm to detect small targets, like the small Brachytherapy needle. Further
work is required to study the effect of regularization on the contrast. Future
work will study the effect of uncontrolled tissue motion such as blood flow and
respiration on the DP algorithm. The 2D algorithm can be extended to 2D+t,
to exploit the cost function in previous time as well as incorporating a 2D+t
smoothness regularization.
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Abstract. In this paper we present computationally efficient imple-
mentation of the minimizing flow approach for optimal mass transport
(OMT) with applications to non-rigid 3D image registration. Our imple-
mentation solves the OMT problem via multi-resolution, multigrid, and
parallel methodologies on a consumer graphics processing unit (GPU).
Although computing the optimal map has shown to be computationally
expensive in the past, we show that our approach is almost two orders
magnitude faster than previous work and is capable of finding transport
maps with optimality measures (mean curl) previously unattainable by
other works (which directly influences the accuracy of registration). We
give results where the algorithm was used to compute non-rigid regis-
trations of 3D synthetic data as well as intra-patient pre-operative and
post-operative 3D brain MRI datasets.

1 Introduction

Image registration and morphing are amongst the most common image process-
ing problems. Registration is the process of establishing a common geometric
reference frame between two or more image data sets and is necessary in or-
der to compare or integrate image data obtained from different measurements.
A vast amount of literature exists on image registration techniques and we re-
fer the reader to [1, 2] for an overview of this field. In this paper, we approach
the registration task by treating it as an optimal mass transport problem. As
with other registration techniques, the computational burden associated with
this problem is high. We propose a multi-resolution approach for the solution of
this problem on the GPU to alleviate this difficulty.

The optimal mass transport problem was first formulated by a French math-
ematician Gasper Monge in 1781, and was given a modern formulation in the
work of Kantorovich [3] and, therefore, is now known as the Monge-Kantorovich
problem. The original problem concerned finding the optimal way to move a pile
of soil from one site to another in the sense of minimal transportation cost.
Hence, the Kantorovich-Wasserstein distance is also commonly referred to as
the Earth Mover’s Distance (EMD).
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Recently, Haker et al. [4, 5] have applied the optimal mass transport approach
to certain medical image registration problems. Rigorous mathematical details
for their algorithm are given by Angenent et al. [6]. Although there have been
a number of algorithms in the literature for computing an optimal mass trans-
port, the method by Haker et al. computes the optimal warp from a first order
partial differential equation, which is a computational improvement over earlier
proposed higher order methods and computationally complex discrete methods
based on linear programming. However, at large grid sizes and especially for 3D
registration the computational cost of even this method is significant.

Though computationally expensive, the OMT method has a number of dis-
tinguishing characteristics: (1) it is a parameter free method and no landmarks
need be specified, (2) it is symmetrical (the mapping from image A to image B
is the inverse of the mapping from B to A), (3) its solution is unique (no local
minima), (4) it can register images where brightness constancy is an invalid
assumption, and (5) OMT is specifically designed to take into account changes
in densities that result from changes in area or volume.

Contribution. In this paper we extend our previous work [7] and implement
the more general formulation of the OMT problem for 3D non-rigid registration
based on multi-resolution techniques and using the parallel architecture of the
GPU. Although multi-resolution methods have served as critical pieces of reg-
istration algorithms in the past, it had yet to be shown that the Optimal Mass
Transport problem could be solved in the same manner. Our experimental re-
sults show that this is indeed the case, a result which has implications for many
fields beyond imaging due to the ubiquitous nature of the OMT problem. We
also show that the PDE-based solution to the OMT problem is greatly enhanced
by our approach to such an extent that it becomes practical for use on large 3D
datasets both in terms of speed and accuracy. Overall, these results show that
OMT-based image registration is practical on medical imagery and, thus, mer-
its further investigation as an elastic registration technique without the need of
smoothness priors or brightness constancy assumptions.

2 Optimal Mass Transport for Registration

2.1 Formulation of the Problem

We will briefly provide an introduction to the modern formulation of the Monge-
Kantorovich problem. We assume we are given, a priori, two sub-domains Ω0 and
Ω1 of Rd with smooth boundaries, and a pair of positive density functions, μ0

and μ1 defined on Ω0 and Ω1 respectively. We assume that,∫
Ω0

μ0 =
∫
Ω1

μ1 (1)

This ensures that we have same total mass in both the domains. The functions
μ0 and μ1 in this formulation can be the same as the source and target images,
respectively, or a smooth version of them. They can also be scalar fields that are
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appropriate for the underlying physical model. We now consider diffeomorphisms
ũ from Ω0 to Ω1 which map one density to other in the sense that,

μ0 = |Dũ|μ1 ◦ ũ (2)

which we call the mass preservation (MP) property, and write ũ ∈ MP . Equa-
tion (2) is called the Jacobian equation. Here, |Dũ| denotes the determinant
of the Jacobian map Dũ, and ◦ denotes composition of functions. It basically
implies that if a small region in Ω0 is mapped to a larger region in Ω1, then
there must be a corresponding decrease in density in order for the mass to be
preserved. There may be many such mappings, and we want to pick an optimal
one in some sense. Accordingly, we define the squared L2 Monge-Kantorovich
distance as following:

d22(μ0, μ1) = infũ∈MP

∫
Ω0

‖ ũ(x) − x ‖2 μ0(x)dx (3)

The optimal MP map is a map which minimizes this integral while satisfying
the constraint given by Equation (2). The Monge-Kantorovich functional, Equa-
tion (3), is seen to place a penalty on the distance the map ũ moves each bit of
material, weighted by the material’s mass. A fundamental theoretical result [8,
9], is that there is a unique optimal ũ ∈MP transporting μ0 to μ1, and that ũ
is characterized as the gradient of a convex function ω, i.e., ũ = ∇ω. This theory
translates into a practical advantage, since it means that there are no non-global
minima to stall our solution process.

2.2 Computing the Transport Map

We will describe here only the algorithm for finding the optimal mapping ũ.
The details of this method can be found in [4]. The basic idea for finding the
optimal warping function is first to find an initial MP mapping u0 and update it
iteratively to decrease an energy functional. When the pseudo time t goes to ∞,
the optimal u will be found, which is ũ. Basically there are two steps. The first
step in this algorithm is to find an initial mass preserving mapping. This can
be done for general domains using the method of Moser [10] or the algorithm
proposed in [4]. The later method can simply be interpreted as the solution
of a one-dimensional Monge-Kantorovich problem in the x-direction followed
by the solution of a family of one-dimensional Monge-Kantorovich problems in
y-direction and finally solve a family of 2D Monge-Kantorovich problems in
the z-direction. The second step is to adjust the initial mapping found above
iteratively using gradient descent in order to minimize the functional defined in
Equation (3), while constraining u so that it continues to satisfy Equation (2).
This process iteratively removes the curl from the initial mapping u and, thereby,
finds the polar factorization of u. For details on this technique, please refer to
[4]. The overall algorithm is summarized graphically in Figure 1. This same
algorithm can be used to compute transport map in arbitrary dimensions the
only difference being that in R2 the problem is a bit simpler where you solve
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Fig. 1. Optimal Mass Transport Algorithm

the Laplace equation with Dirichlet boundary conditions as compared to solving
a Poisson equation with Neumann boundary conditions in higher dimensions.
These computations are done in our implementation using Multigrid methods.

3 Implementation

3.1 Multi-resolution Warping

Performing image registration using a multi-resolution approach is widely used
to improve speed, accuracy, and robustness. The basic idea is that registration
is first performed at a coarse scale. The spatial mapping determined at the
coarse level is then used to initialize registration at the next finer level. This
process is repeated until it reaches the finest scale. This coarse-to-fine strategy
greatly improves the registration success rate and also increases robustness by
eliminating local optima at coarse scales [11]. Our coarse to fine hierarchy is
comprised of three levels (Figure 2).

In our experiments, we found that the coarse-to-fine strategy converges at
least twice as fast as the single-resolution solution. Additionally, we found that
the coarse to fine method converges to solutions with accuracy (low error metric:
mean curl) unattainable by single-resolution methods.
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Fig. 2. A Multi-Resolution Registration Scheme. We employ a coarse to fine
hierarchy three levels deep with which we solve for an optimal mapping from source
to destination data. This method has shown to speed convergence and realize more
accurate solutions.

3.2 3D Multigrid Laplacian Inversion

We inverted the Laplacian (a key component of the OMT algorithm) using a 3D
multigrid solver. The multigrid idea is very fundamental, it takes advantage of
the smoothing properties of the classical iteration methods at high frequencies
(Jacobi, Gauss Siedel, SOR etc) and the error smoothing at low frequencies by
restriction to coarse grids. The essential multigrid principle is to approximate
the smooth (low frequency) part of the error on coarser grids. The non-smooth
or rough part is reduced with a small number of iterations with a basic iterative
method on the fine grid.

The basic components of multigrid algorithm are discretization, intergrid
transfer operators (interpolation & restriction), relaxation scheme and the iter-
ative cycling structure. We used an explicit finite difference scheme for approxi-
mating the 3D Poisson equation. This approach uses a 19-point formula on the
uniform cubic grid. Relaxation was performed using a parallelizable four-color
Gauss-Seidel relaxation scheme. This increases robustness and efficiency and is
especially suited for the implementation on the GPU. We used tri-linear interpo-
lation operator for transferring coarse grid correction to fine grids. The residual
restriction operator for projecting residual from the fine to coarse grids is the
full-weighting scheme. A multigrid V(2,2)-cycle algorithm was used to iterate for
solution (Residual max norm ≈ 10−5). Interested readers are referred to [12–14]
for details on implementation of the multigrid methods.

3.3 GPU Implementation

An advantage of our solution to the OMT problem is that it is particularly suited
for implementation on parallel computing architectures. Over the past few years,
it has been shown that graphics processing units (GPUs; now standard in most
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Fig. 3. The GPU realizes an increasing advantage in solving the OMT problem over
the CPU as grid size increases up to 1283 sized grids. Past this point, there is still a
large advantage, but a sharp drop is due to memory bandwidth limitations.

consumer-level computers), which are naturally massively parallel, are well suited
for these types of parallelizable problems [15, 16].

Taking advantage of these two facts, we implemented our OMT multigrid
algorithm on the GPU. The GPU can be considered a massively parallel co-
processor and dedicated memory interfacing to the CPU over a standard bus.
Modern GPUs are comprised of up to 128 symmetric processors running up to
speeds of 1.35Ghz. Their advantage over the CPU in this sense is that while the
CPU can execute only one or two threads of computation at a time, the GPU can
execute over two orders of magnitude more. Thus, instead of sequentially com-
puting updates on data grids one element at a time, the GPU computes updates
on entire grids on each render pass, significantly improving performance (Fig-
ure 3). For instance, on a modest Dual Xeon 1.6Ghz machine with an nVidia
GeForce 8800 GX GPU (3DMark score of 7200), improvements in speed over
our CPU OMT implementation reached 4826 percent on a 1283 volume data.
Presently available GPUs only allow single precision computations, however, this
did not affect the stability of the OMT algorithm.

4 Results

We illustrate our registration method using two examples. In the first case, we
register a synthetically generated 3D sphere to a deformed (dented) counterpart
(Figure 4). In the second case, two 3D brain MRI datasets were registered. The
first data set was pre-operative and while the second data set was acquired
during surgery and craniotomy and opening of the dura (Figure 5,6). Both were
resampled to 2563 voxels and preprocessed to remove the skull.

In both cases, mean curl of the transport map was reduced to approximately
10−3 indicating convergence. However, our coarse-to-fine multigrid implementa-
tion on the GPU solves for the optimal transport maps in practical computation
times. For instance, registration of the first data (size 1283) set required 800
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Fig. 4. Synthetic Imagery Results. A sphere is mapped to its deformed counterpart.
In the bottom row, the left figure shows the optimal mass transport mapping as a
deformation grid overlaid on the destination data. And the right figure shows the
magnitude of deformation. Data size 1283)

iterations of the solver (most at the coarsest scale) requiring less than a minute
of computation time. In the second case, (size 2563) 3600 iterations of the solver
were run, requiring less than 15 minutes of computation time.

5 Conclusions

In this paper, we presented a computationally efficient method for 3D image
registration based on the classical problem of optimal mass transportation. Many
times, global registration methods similar to that presented here are computation
intensive making them impractical. However, we have shown that the optimal
mass transport is, in fact, a viable solution for elastic registration by achieving
low run times on commonly sized 3D datasets on standard desktop computing
platforms.
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Fig. 5. Brain Sag Registration. The top four figures show the registration results
on an axial slice and the bottom four show results for a saggital slice from the 3D
volume. The deformation due to the brain sag after carniotomy and openning of the
dura is clearly visible in both the deformation grid and the magnitude of deformation
plots. The gravity vector is parallel to the horizontal axis. A rigid shift can also be
noticed due to slight displacement of the head during surgery.
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Fig. 6. Brain Sag Registration(3D View). The brain sag is visible in the anterior
portion of the brain. (Data size 2563).
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Abstract. In this paper, a novel hardware-accelerated framework is pro-
posed for real-time and realistic simulation of bleeding. In the frame-
work, computational advantage of newly released Physics Processing
Unit (PPU) is exploited for simulating the mechanical behavior of blood
based on Smoothed Particle Hydrodynamics (SPH). The realism and
flexibility of the framework are achieved by adjusting the biomechani-
cal properties of blood and providing proper collision detection between
blood and soft tissues such as human skin. A GPU-based marching cubes
algorithm is also developed to accelerate the rendering process. Experi-
mental results demonstrate our framework can greatly improve the time
performance of bleeding simulation with satisfying realism and has po-
tential to be integrated into many interactive simulators.

1 Introduction

Considerable efforts have been dedicated to improving the performance of com-
puter-assisted surgical simulation. While many simulators have been developed,
most of them focus on providing interactive deformable models of soft tissues
and rapid haptic rendering. However, real-time and realistic simulation of bleed-
ing, which is an important component of virtual surgery, is given relatively little
attention. In reality, bleeding simulation profoundly influences the quality of sur-
gical training and planning, since the handling of various bleeding phenomena
requires specific skills from the surgeons. For example, in hysteroscopic simula-
tors, some work has been done to simulate the diffusion of intra-uterine bleeding,
which should obscure the view of the surgeons in real surgery. The added real-
ism can help surgeons learn how to perform correct action in this situation[1].
Moreover, bleeding simulation can provide crucial information for surgical train-
ing and designing. For example, related information on aneurysm hemodynamics
and pathology can be obtained from bleeding simulation for designing treatment
of aneurysms. Finally, modeling blood flow is not only essential for surgical simu-
lation but also in diagnosis and treatment planning of individual patient data[2].
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The key challenge of real-time bleeding simulation is imitating the behaviors
of blood interactively and accurately with sophisticated viscous fluid models
and complicated biomechanical properties, but under limitation of computa-
tional power. In this paper, a novel framework for real-time bleeding simulation
with hardware acceleration is proposed. In the framework, the computational
advantage of newly released Physics Processing Unit (PPU) is exploited for sim-
ulating the various bleeding phenomena based on Smoothed Particle Hydrody-
namics (SPH). To ensure the realism, parameters of vessels are extracted from
Chinese Visible Human(CVH) dataset, together with biomechanics of human
blood, to generate the particle-based blood model. Collision detection is imple-
mented by constructing proper models based on the built-in algorithm of the
PPU. A GPU-based marching cubes algorithm is also developed to accelerate
the rendering process.

2 Previous Work

Different approaches for bleeding simulation have been proposed, which can be
summarized into two major categories: temporal texture synthesis and physi-
cally based imitation. Although the former can mimic certain phenomena such
as effusion[3], this technique does not have the full capability of synthesizing
heterogeneous texture for complicated bleeding phenomena such as flowing and
emitting.

In the past, the adoption of physically based methods is limited by the perfor-
mance of computational power. The development of computational techniques
in fluid dynamics[4], together with the increasing capability of the hardware,
found many promising approaches in vascular and bleeding simulation[5][6]. In
general, these approaches can be categorized into two classes: grid-based meth-
ods and particle-based methods.Although some speedup algorithms have been
proposed[7][8], these methods are still not suitable for most real-time and in-
teractive surgical simulation, especially when complicated models are used to
ensure the realism. Smoothed Particle Hydrodynamics (SPH) is one of the effi-
cient particle based methods initially proposed for the simulation of astrophysical
problems such as fission and stars. This technique was first introduced to the
computer graphics community to depict fire and other gaseous phenomena[9].
Müller adopted this method to simulate bleeding for virtual surgery with mod-
els of up to 3000 particles[10]. Recently, Daenzer proposed a method to simulate
bleeding and smoke in virtual surgery based on simple particle system[11].

3 The Framework

3.1 The Design of Overall Framework

General work-flow of the framework is illustrated in Fig.1. After identifying some
necessary parameters such as the central lines, the radius and the vascular wall
thickness of the vessels from the CVH dataset, a particle system is created by a
module named Particles Distributor(PD). Integrating this particle system with
biomechanical properties of blood, a complete blood model represented by an
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Fig. 1. General work-flow of the framework

XML file for the convenience of data exchange is created. Based on the model, the
dynamics of the blood is simulated by PPU-based SPH, while the appearance of
the blood is rendered using a GPU-based marching cubes algorithm. Meanwhile,
the collision detection models and visualization models of soft tissues such as
human skin are also included to achieve better realism.

3.2 Modeling Blood with Blood Biomechanics

In general, the basic equations of fluid motion are obtained by imposing that the
fluid conserves mass, momentum and energy. We assume the temperature of our
blood model is nearly constant and there is no heat input into the system and
no heat source in the region. Therefore, the equation for balance of energy is the
same as balance of mechanical energy and work and the energy conservation leads
to no new independent equation. In addition, the particle system can inherently
converse mass by setting that both the number of particles and the mass of each
particles are constant. Thus we can focus on how to solve the Navier-Stokes
which formulates conservation of momentum:

ρ
∂V

∂t
= −ρV · ∇V −∇p + μ∇2

V + ρg (1)

Here ρ is the density; V is the vector velocity field; the vector operator ∇ is
define as ∇ ≡ i ∂

∂x + j ∂
∂y + k ∂

∂z ; p is the pressure; g means the body forces such
as gravitational forces; μ is viscosity coefficient.

Compared to other fluid simulation approaches, SPH is relatively simple in
implementation and fast in computation [12] [13]. Moreover, it can be accelerated
with PPU so that sophisticated blood effects can run at a higher frame rate. The
basic mechanism of SPH is based on the following equation:

AS(x) =

∑
j

mj
Aj

ρj
W (r, h) (2)

where a scalar quantity A at position x is a weighted sum of contributions
from neighboring particles. mj and ρj are the mass and density of particle j,
respectively, and r = x−xj . Aj is the field quantity at xj . The functionW (r, h)
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is referred to as the smoothing kernel with the properties
∫
W (r, h)dr = 1 and

limh→0W (r, h) = δ(x), where h is the support radius and δ is the Dirac-function.
Initially, particles have three quantities including mass, position and velocity.

In every time step of the simulation, SPH is used to evaluate the density (ρi) and
the force density (fpi , fvi ) caused by pressure and viscosity at particle i based on
the following equations derived in[14]:

ρi =
∑
j

mjW (r, h) (3)

f
p
i = −∇p(ri) = −

∑
j

mj(
pj + pi

2ρj
)∇W (r, h) (4)

and

f
v
i = μ∇2

v(ra) = μ

∑
j

mj
V j − V i

ρj
∇2

W (r, h) (5)

where r = xi−xj .Adding the gravitational force, we can get the total force den-
sities. Thus based on Newton’s second law, we can compute acceleration, velocity
and position of every particle. In the computation, we use built-in smoothing
kernels (W (r, h)) in the PPU to ensure the stability of the simulation.

By centrifugation, the blood is separated into plasma and cells. The cellular
contents are essentially all erythrocytes or red cells. Normally, the red cells oc-
cupy about 45%-50% of the blood volume[15]. To simplify the blood model, two
kinds of particles are defined. One represents plasma and the other represents
red cells. They are randomly distributed in the particle model in a pre-defined
ratio. Based on research of blood biomechanics, typical values of the density of
blood plasma and blood cells are 1025kg/m3 and 1125kg/m3 respectively, while
the whole blood has a specific density between 1.056kg/m3 and 1.066kg/m3.
More important, blood is a non-Newtonian fluid. In general, the constitutive
equation of an isotropic incompressible Newtonian fluid is:

γij = −pφij + 2μTij (6)

where

Tij =
1

2
(
∂vi

∂xj
+

∂vj

∂xi
), (7)

Tii = T11 + T22 + T33 = 0. (8)

Here γij is the stress tensor, p is the hydrostatic pressure, φij is the isotropic
tensor or Kronecker delta, Tij is the strain-stress tensor, vi is the velocity com-
ponent, and μ is a constant called the coefficient of viscosity. However, blood
does not perform according to Equation (1) because the μ is not a constant.
In our framework, we approximate the non-Newtonian behavior of blood by
dynamically adjusting the value of viscosity in regular time steps. Some initial
parameters such as the position and number of particles can be set based on
CVH datasets.

3.3 Collision Detection between Blood and Soft Tissues

In PPU, Continuous Collision Detection(CCD) mechanism is provided for fast
moving objects, which is suitable for simulating interactions between blood and
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(a) (b) (c)

Fig. 2. Multi-model representation and collision detection: (a)Multi-model represen-
tation, (b)Particles moving on skin, (c) Collisions between blood, skin, and virtual
instrument.

soft tissues such as skin. However, CCD requires that a skeleton mesh with tri-
angles and vertices is embedded in the objects involved. Therefore, soft tissue
collision with blood is simultaneously represented with a deformation model, a
collision model and a visualization model, which all have different data struc-
tures but consistent geometrical positions(Fig.2(a)). Fig.2(b) shows the particles
moving on the human skin based on the CCD mechanism. Fig.2(c) illustrates
the collisions between blood, skin and virtual instrument.Two built-in key pa-
rameters in PPU, Coefficient of Restitution and Adhesion Factor, are allowed to
be defined and dynamically adjusted to get different effects. The former controls
how much the particles bounce when they collide with soft bodies while the
latter determines how easily particles slide along a surface.

3.4 GPU-Accelerated Marching Cubes for Blood Surface Rendering

A GPU-accelerated marching cubes algorithm is intergraded into the framework
to avoid having the acceleration achieved by PPU being neutralized by any slow
rendering process occurring when the number of the particles is relatively large.
Each particle in SPH represents part of the fluid. Therefore, the particles form
a color field inside the space(or volume). Direct rendering of the volume is slow
and does not result in a convincing appearance. Usually, the surface of the fluid,
which is defined by a user-specified isovalue, is first extracted. Then, rendering
is performed using the surface elements or mesh. In our system, the marching
cube method is employed because it is fast and more easily accelerated by current
GPU hardware.

Marching cubes is an algorithm for rendering isosurfaces in volumetric data.
The method is performed on each grid cell, which is formed by every eight
neighboring voxels in a volume. Details of isosurfaces extraction can be referred
to [16]. After determining which edges of the grid intersect the isosurface, trian-
gular patches are created to divide the grid. By connecting the patches from all
grids on the isosurface boundary, we have the final surface mesh representation.

Because of the highly parallelizable nature of Marching Cubes algorithm, it
has been accelerated using GPU [17][18]. However, due to limitations in GPU
capabilities at that time, either some parts of the algorithm need to remain
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running on CPU or several passes are required to complete the whole algorithm.
Both scenarios introduce overheads and consequently degrade performance.

Fluid Volume

Geometry Shader
Grid cell

Fragment Shader

RenderingCell Indexing and Interpolation

Fig. 3. Blood rendering using GPU accelerated Marching Cube.

Utilizing the new Geometry Shader feature in the newest GPU supporting
shader model 4.0, the marching cubes method can be performed entirely inside
the GPU in a single pass. Fig. 3. illustrates the whole process divided among dif-
ferent shaders to complete the marching cubes implementation. First, marching
cubes grid cells are encoded as point primitives and sent to the geometry shader.
The geometry shader operates on each point in parallel and generates a set of
triangles used to cut the cells according to the marching cubes code table. Next,
the positions of constructed vertices are adjusted according to the voxel values
in the grid cells. Finally, the isosurface is illuminated in the fragment shader for
display.

4 Experiment Results

4.1 Time Performance

The proposed framework has been implemented on a PC with the following
configuration: Pentium 4 Dual Core 3.2GHz CPU, 4GB RAM, NVIDIA GeForce
8800 display adapter and AGEIA PhysXP1 physics processing unit. A series of
experiments have been done to compare the time performance of CPU-based
bleeding simulation and our hardware-accelerated framework. Tables 1. and 2.
show the experimental results. A significant speed improvement is observed when
PPU and GPU are used in bleeding simulation. The average frame rate of GPU-
base MC is 29.7F/S at a volume size of 64×64×64, which can fulfill most real-
time surgical simulation. The corresponding average frame rate of the CPU-
based MC is only 5.6F/S. With the increase of the number of the particles, the
advantage of PPU-accelerated SPH is clearly revealed in Table 2. The frame
rate of PPU-based SPH stays above 50F/S while the CPU-based SPH is under
10F/S when the number of particles is more than 5000. A dramatic decrease
of time performance of PPU-based SPH occurs when the number of particles
is more than 6000. This is maybe due to the PPU using relatively slow PCI
bus interface to transfer data. Although this need to be verified through more
experiments, in most cases, 6000 or fewer particles are enough to achieve realistic
effects.
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Table 1. The comparison between GPU and CPU-based MC for blood rendering

Volume Size Number of Triangles CPU(F/S) GPU(F/S)

32×32×32 15568 62.3 129.5

64×64×64 103822 5.6 29.7

128×128×128 967383 0.55 5.3

Table 2. The comparison between CPU and PPU-based SPH for bleeding simulation

Num. of Particles CPU(F/S) PPU(F/S) Num. of Particles CPU(F/S) PPU(F/S)

500 63.8 64.1 3000 16.4 55

1000 45.4 63.8 4000 12.3 53

1500 33.6 63.8 5000 9.3 49

2000 24.5 60 6000 7.1 7.1

2500 20.7 60 7000 6.2 6.3

4.2 Visualization

Fig. 4. shows the rendering results of our hardware-accelerated bleeding simula-
tion. It demonstrates that our framework can simulate various bleeding phenom-
ena with acceptable realism. The observed interaction between blood and skin
validated the collision detection models. Fig. 5(a) and (b) show the bleeding
effects when integrating our framework to a virtual-reality based Orthopedics
surgery trainer (refer to attached video). Real-time and realistic bleeding simu-
lation can help trainers learn how to handle various bleeding phenomena during
the surgery and therefore improve their experience and skills.

5 Conclusion and Future Work

In this paper, a novel framework for real-time bleeding simulation with hardware
acceleration is presented. The relative computational advantage of the Physics
Processing Unit (PPU) is exploited for simulating bleeding based on SPH. The
realism is achieved by adjusting the biomechanical properties of the simulated
blood and providing proper collision detection between the simulated blood and
soft tissues. Furthermore, a GPU-based marching cubes algorithm is developed
to accelerate the rendering process. Experimental results demonstrate that the
framework achieves realistic and real-time simulation of bleeding. Future work in-
cludes optimizing the marching cubes algorithm, integrating cutting algorithms
and haptic devices and developing simulators based on this bleeding simulation
framework.
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Fig. 4. The visualization results of various bleeding phenomena with collision between
blood and human skin: (a) trickling, (b) flowing, (c) pooling, (d) gushing, (e) pouring,
and (f) dropping.
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Abstract.  In this paper, we present a biomechanical framework to model air-
flow inside the bronchus and deformations across the tracheobronchial tree, 
pipeline for the simulator, theory and initial steps to realize this framework on a 
highly parallel graphical processing unit (GPU). We discuss the main chal-
lenges expected and encountered to date. By using computational fluid dynam-
ics (CFD) and computational solid dynamics (CSD) principles, we propose a 
numerical simulation framework that includes a biomechanical model of the 
tracheobronchial tree to simulate air flow inside the tree, on GPU in real-time. 
The proposed 3D biomechanical model to simulate the air inside the lungs cou-
pled with a deformation model of the tracheobronchial tree, expressed through 
fluid-structure interaction, can be used to predict the transformations of the 
voxels from a 4D computed tomography (4DCT) dataset. Additionally, the pro-
posed multi-functional CFD and CSD based framework is suitable for clinical 
applications such as adaptive lung radiotherapy, and a regional alveolar ventila-
tion estimation.  

1 Introduction 

Lung cancer and various other ongoing or chronic lung diseases, e.g. closure of air-
ways and emphysema, if lumped together, it is the number three killer in the United 
States. There has been a significant amount of research in analyzing the tissues of the 
lung through advanced imaging modalities such as Positron Emission Tomography 
(PET), Computerized Tomography (CT), and Magnetic Resonance Imaging (MRI). 
By applying various forms of medical image processing algorithms to CT, MRI, and 
PET images, anatomical structures and their material properties can be explored. 
Tawhai et al. make use of various forms of image segmentation algorithms to gener-
ate subject-specific computational meshes of the human bronchial tree [1, 2]. Hoff-
man et al. used deformable registration algorithms on CT scans to estimate the re-
gional ventilation in ovine lungs [3, 4]. In the past few years, researchers all over the 
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world have been able to simulate natural phenomena such as fluids, gases, fire behav-
ior on GPUs accurately and faster than CPUs. Three different approaches to simulate 
fluids in the field of computational fluid dynamics exist, fixed grid-based (Euler) or 
particle motion (Lagrange) and a hybrid Arbitrary Lagrangian-Eulerian (ALE). Eule-
rian methods evaluate material properties at stationary grid points, whereas Lagran-
gian methods employ moving grids with the material particles to solve the governing 
equations [5]. Kruger et al. built up a million Lagrangian particles to simulate and 
visualize 3D flow fields on non-uniform grids [6]. Dynamically regenerated meshes 
are used in [7] to simulate fluids. Viscoelastic material simulation based upon Eule-
rian methods is shown in [8]. Harris et al. make use of GPU to simulate cloud dynam-
ics whose state is governed by incompressible Navier Stokes (NS) equations [9, 10].  

In this paper, we propose a simulation framework to simulate the air inside the tra-
cheobronchial tree on GPU. As part of this framework, we propose a 3D biomechani-
cal model which accounts for the air motion inside the tracheobronchial tree, and the 
deformations on the tracheobronchial tree. This work is the first of its kind to simulate 
elasticity theory and fluid dynamics to predict the displacements and deformations of 
the human tracheobronchial tree on GPU, which provides opportunity to run the simu-
lation in real-time and on customer PCs. The framework and biomechanical model 
proposed might be used to account for the alveoli ventilation when it is combined 
with an image registration algorithm, and it can also account for transport of aerosol 
contained in cigarette smoking in human lung. 

2 GPU Pipeline 

GPUs are very powerful, highly parallel stream processing processors. Since they 
are specifically built for vector processing, they have a parallel computer architecture 
model. Their architecture is built upon single instruction multiple data (SIMD) para-
digm. In SIMD, a single node dispatches the instruction to other processing nodes that 
compute the instruction with their own local data. SIMD computers provide superior-
ity over instruction driven processors, CPUs, due to their parallel execution of the in-
struction. 

 In Fig. 1 there is an illustration of floating point computational power of GPUs 
with respect to CPUs. This superiority makes GPUs an ideal platform to solve data-
driven numerical problems in parallel. In a typical GPU, which is available on almost 
any PC sold today in market; there are one vertex and one fragment processor. Each 
processor is realized through several pipelines, working in parallel. In a NVIDIA 
GTX8800, which we use for our framework, there are 128 vertex and fragment proc-
essors pipelines. In Fig. 2, the GPU pipeline that realizes the stream processing nature 
of these parallel machines is illustrated.  
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Fig. 1. Illustration of 32-bit floating point GPU comparison courtesy of Engel et al [11]. 

Fig. 2. Graphical Processing Pipeline, GPU Architecture 

3 Biomechanical Modeling of Air inside the Tracheobronchial 
Tree and its Deformations 

The tracheobronchial tree geometry, shape, measurements and dimensions change 
for each individual. Average tracheal length ranges from 5.4 cm to 13.1 cm, as the age 
of the subjects changes from 2 to 20 [12]. Generally, air flow through the terminal 
bronchioles follows a laminar pattern, whereas air flow inside the trachea can be tur-
bulent with high ventilation rates in abnormal conditions [13]. Hence our biome-
chanical model consists of two parts to be able to correctly model the physics of the 
tracheobronchial tree: Modeling air inside the tracheobronchial tree, and modeling the 
deformations on the tracheobronchial tree.  

3.1 Modeling air trough computational fluid dynamics (airway gas dynamics) 

We model air inside the tracheobronchial tree as a fluid defined as any material which 
deforms continuously under shear stress. We make use of the continuum assumption 
of fluid mechanics, which states that fluid can be treated as an infinitely divisible sub-
stance. We divide the solution domain into 3D infinitesimal cells, where the velocity 
and the density of the fluid are defined as average properties. Our modeling assump-
tions for fluid is being incompressible, i.e. each cell has constant volume over time, 
homogeneous, density of the fluid stays constant in space, viscous, rate of deforma-
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tion is same under the same stress for all fluid cells. Fluid cells might experience de-
formation, rotation, translation in space. The state of the fluid is determined through 
velocity of the each fluid cell, being a function of time and space, effectively repre-
sented as a vector field, and pressure of each fluid cell, which is function of space and 
time.  

3.1.1 Equations of Fluid State 

Governing equations for fluid motion are the Navier-Stokes equations (NS). The state 
of the fluid, given by velocity and pressure, can be determined through solutions of 
NS. 

(1)

(2)

In the above equations, u represents velocity, a vector quantity, having 3 compo-
nents in 3D. If x(x,y,z) represents the position of the fluid cell, the velocity is u(x,t)
and the pressure is p(x,t). ρ  represents the density of the fluid, υ  represents the 
kinematics viscosity. F(x,t) represent the external forces acting on the fluid including 
the gravitational force. The ( )uu ∇•  term is called the advective term and it is the 
source of nonlinearity. It resembles the propagation of any disturbance caused by the 

external forces acting on the fluid. The p∇
ρ
1  term is the effect of pressure on the 

rate of change of the velocity. The u2∇υ term represents viscous diffusion. Due to 
viscosity, fluids are resistive to move, this resistance results in the distribution of 
momentum. Eq. 2 states the mass conversation since the fluid is assumed to be in-
compressible. As for the boundary conditions to solve NS, we use no-slip velocity and 
pure Neumann pressure condition. No-slip velocity states that velocity is zero in all 3 
dimensions at the boundaries. Pure-Neumann boundary conditions state that the rate 
of change of pressure is zero along the normal direction on the surface boundaries.  

3.1.2 A Solution Method for Equations of Fluid State 

The solution of NS, the set of Partial Differential Equations (PDE), can be found in 
many texts. We follow the lead of Griebel et al. [14] and Marsden et al. [15]  Marsden 
et al. show the solution of the NS through a theorem in vector calculus. This theorem 
is called the Helmholtz-Hodge Decomposition Theorem. It states that in the same way 
a vector is decomposed into two components, a vector field can be decomposed into 
two vector fields. A divergent vector field w can be decomposed into a non-divergent 
vector field u and a vector field composed by the gradient of the scalar field. The 
Helmholtz Hodge decomposition theorem is shown in Eq. 3. 

(3)

( ) Fuuuu +∇+∇−∇•−=
∂
∂ 21 υ

ρ
p

t
0=•∇ u

p∇+= uw
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Since the application of external forces, advection and viscous diffusion, results in 
a divergent velocity field, w, at the end of each time step, we must satisfy the continu-
ity requirement by subtracting the gradient of pressure field from the divergent veloc-
ity field. 

(4)

If we apply divergence to both sides of Eq 3, then we have  
p∇•∇+•∇=•∇ uw

p2∇=•∇ w (5)

Since u is a divergent-free vector field, u•∇ drops out. Eq. 5 is known as the 
Poisson-pressure equation. Once we have the pressure distribution, Eq. 4 gives the ve-
locity at each time t, for any point in the fluid domain. We can further simplify Eq. 1 
by defining a projection operator, �, which projects the divergent vector field w into 
its non-divergent vector field, u. If we apply � to both sides of Eq. 3,  

( ) ( ) ( )p∇Ω+Ω=Ω uw  (6) 

By definition of �

  (7) 

If we substitute Eq. 7 into Eq. 6 

(8) 

Applying the projection operator � to Eq. 1 and substituting Eq. 8 into the resulting 
formulation will yield a drop out of the pressure term from Eq. 1. 

  (9) 

3.2 Modeling tracheobronchial wall dynamics using linear elasticity theory  

An important characteristic of the tracheobronchial tree is that it deforms constantly 
under shear stress due to its elastic nature. When the fluid starts to move inside the 
tracheobronchial tree, its pressure distribution causes displacements among other 
forces acting on the tracheobronchial tree. During an inhalation expiration cycle, 
changes in the transmural pressure inside and outside of the tracheobronchial tree 
causes deformations on the walls. These deformations furthermore change the 
boundaries for the fluid motion, resulting in displaced boundaries for the fluid simula-
tion. This type of coupling between fluid and an elastic wall is modeled through 
Fluid-Structure Interaction (FSI). Fluid pressure distribution gives the force exerted 
upon the elastic wall, whereas elastic displacements calculated through elastic body 
theory of solid mechanics, give the new boundaries for fluid. Holzhauser et al. devel-
oped a mathematical model to estimate the change in cross-sectional area of the tra-
chea based upon a coupling between fluid flow and elastic theory [16].  FSI models 

p∇−= wu

( ) ( ) uuw =Ω=Ω

( )p∇Ω=0

( )[ ]Fuuuu +∇+∇•−Ω=
∂
∂ 2υ

t
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are being also used in the simulation of blood flow in highly deformable arteries. In 
[17], authors developed a method to couple elastic arteries wall deformation as a 
moving boundary condition for blood flow. Equations for the incompressible fluid 
flow will be the same as given in Eq. 1. and Eq. 2. However the boundaries for the 
simulation for each time step will be redefined with the displacement calculated 
through the elasticity theory. Based on a staggered partition approach, we will divide 
the problem domain into two steps as shown by Griebel et al. [18]. At each time step, 
the fluid flow will be solved as if it has fixed boundaries, and the pressure distribution 
calculated by the fluid flow will be an input to the elasticity problem. Then newly cal-
culated displacements through elasticity will be fed into fluid flow as new boundaries. 
Fig 3 gives an overview of FSI. 

                                  
Fig. 3. A schematic of Fluid-Structure Interaction Modeling 

In the elastic body deformation domain, time dependent Lame Equation serve as 
the mathematical formulation of the elasticity problem. It is given as  

where u represents the displacement of elastic solid, Sρ  is the density of elastic solid, 

b are the external forces acting on the elastic solid, μ and λ are material specific 
Lame constants. It is to be noted that the b includes the force caused by the fluid flow. 
Finite methods have been extensively investigated for computing the solution of the 
elastic equation.  

3.3 Biomechanical Model 

                 
Fig. 4.   2D cross-section of a 3D biomechanical model of the human tracheobronchial tree. 

In Fig. 4, a 2D cross-section of our biomechanical model for the tracheobronchial tree 
is shown. This model utilizes a fluid flow model of CFD with an elasticity theory of 
CSD in a FSI. Inputs to this model is gravitational force, external forces acting on the 
tracheobronchial tree, volume-time curve of the subject inhalation exhalation cycle, 
computational geometry of tracheobronchial tree, inhaled air parameters, i.e viscosity, 

buu
t
u

SS ρμλμρ =•∇∇+−Δ−
∂
∂ )(2

2 (10)
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density, tissue properties for elasticity, density of the tissue, lame constants. As an 
output of this model, tracheobronchial deformations can be predicted as displace-
ments.  

4 Framework Pipeline 

To implement the proposed framework, a simulation pipeline was developed, 
which is illustrated in Fig. 5. Acquisition of the geometry for the tracheobronchial tree 
is done through segmentation of the images obtained through CT. Fluid simulation is 
mostly done on GPU with an Eulerian grid approach where advection is done through 
a semi-Lagrangian method based on [19]. Elastic body simulation will be done 
through the Arbitrary Lagrangian-Eulerian (ALE) method, in process of implementa-
tion. Once we have the deformations of the tracheobronchial tree, 4DCT registration 
algorithm can run to estimate alveoli ventilation. 

Fig. 5.  Framework Pipeline to realize our 3D biomechanical model 

5 Initial Implementation & Results 

We have implemented initial operators which form the basis functions for the biome-
chanical framework proposed. The operators, addition, multiplication, gradient, di-
vergence, and Jacobian are implemented on GPU. We use OPENGL and GLSL shad-
ing language to implement our framework. 32-bit floating point 3D textures are used 
to represent 3D uniform grid that we need to use for our discretization of the partial 
differential equation domain. As a discretization method, we use finite differences. 
32-bit floating point textures are necessary to do any floating point arithmetic on 
GPU. In each channel of the 3D RGBA or luminance texture, the texture contains a 
true single precision floating point number that makes them suitable to represent 3D 
vector fields, i.e. velocity of fluid w(x,t), u(x,t), or scalar fluid pressure field, p(x,t).
To implement the general purpose calculation on GPU with 32-bit 3D textures, we 
render into 3D texture with frame buffer objects to have a feedback loop between 
framebuffer and texture units illustrated in Fig. 2. To compute each operation, we 
need to be able to generate as many fragments as the grid dimension. We render a 
dummy quadrilateral of filling the viewport for each slice of the 3D texture and run 
the computation on each fragment. Results are stored back on the 3D texture voxels 
trough framebuffer objects. Multi-texturing is used when there is more than one oper-
and as in the case of addition. The gradient operator takes a 3D luminance texture as 
input and gives a 3D RGBA texture as output, since gradient operates on a scalar field 
and gives the greatest rate of change on that scalar field as a vector field. The gradient 
of the pressure field, p(x,t), is calculated trough the finite difference formula given in 
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Eq. 11. We calculate the gradient of the pressure field to guarantee that the fluid 
obeys the divergent-free velocity assumption (incompressibility). Once the fluid is 
perturbed by an external force, the result is a divergent velocity field. This divergence 
on velocity field can be removed by subtracting the gradient of the pressure field at 
that time instant from the divergent velocity field according to the HelmHoltz Hodge 
theorem (Eq. 4). 

(11) 

The divergence operator takes a 3D velocity field, and gives a scalar field, so the 
input is a 3D RGBA texture, and the output is a luminance texture. Divergence of the 
velocity field is calculated trough the following finite difference formula. 

 (12) 

For both the gradient and the divergence operators, we sample neighboring top, 
bottom, front, back, left, right voxels at a position in the grid in a GLSL shader and 
calculate the formulas presented with uniform grid dimension assumptions. Two Pois-
son equations arise in the solution of fluid equations, the viscous diffusion and the 
Poisson pressure equations. Once the fluid has been perturbed by an external force, 
the result is a divergent velocity field. We can obtain the pressure distribution by solv-
ing the Poisson pressure equation given in Eq. 5. In order to account for the viscosity 
of the fluid, we need to solve viscous diffusion equation, given in Eq. 13. 

(13)

 Poisson equations can be solved by many numerical iteration methods i.e conju-
gate gradient, Gauss-Seidel, multi-grid, and Jacobian which are generally referred to 
as relaxation methods. We use the Jacobian due to its relatively easy implementation. 
By using the finite difference method, we expand the Laplacian operator, as it is given 
in Eq. 14. 

(14)

Once we substitute Eq. 14 into Eq. 5, then we obtain the iteration equation for the 
Jacobi algorithm, which gives us the pressure distribution across the fluid. 

(15)

We implemented these operators both on GPU and CPU, and plotted the frame per 
second (FPS) values versus the grid size as a comparison metric in Fig. 6. As it can be 
seen from Fig. 6, initially, when the grid dimension is small, CPU outperforms GPU, 
since it is designed to do general purpose computation, and setting up the fragment 
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pipeline on GPU takes up time. Once the grid dimension becomes 32 or higher, GPU 
outperforms CPU 10-30 times, being similar to the plot given in Fig. 1. 

GPU vs CPU speedup
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Fig. 6.   GPU vs. CPU FPS comparison of the framework operators 

6 Challenges 

Poulikakos et al. have shown general challenges encountered while applying CFD 
methods to simulate fluids inside the human body, i.e. blood, cerebrospinal fluid [20]. 
In a similar way, we now list the challenges in implementing our biomechanical 
model. The complex geometry of the tracheobronchial tree makes the image acquisi-
tion and processing steps tedious. Due to the coupling of the elasticity problem with 
the fluid flow, fluid boundaries are modified at each time step, so traction of the 
boundaries is required. Hence boundary conditions are the Achilles’s hill of the prob-
lem. As for the elasticity problem, material properties i.e. lame constants, density of 
tracheobronchial wall tissue, need to be specified. For the external forces acting on 
the exterior of the elastic tracheobronchial tree, an inverse computational dynamics 
approach needs to be specified. Numerical simulation of the problem requires discre-
tization. For the fluid flow we use a finite-difference scheme. This is simple yet not 
suitable for fluid-structure problem. In order to solve Poisson Equations, Jacobi’s it-
eration is used. Convergence and stability of numerical methods used in implementa-
tion should be verified.  

7 Conclusion 

In this paper we present a biomechanical framework to simulate air motion inside the 
tracheo-bronchial tree and estimate the deformations of the tracheobronchial tree 
caused by this fluid flow. This framework is being realized on GPU. The biomechani-
cal model combines a fluid flow model based upon CFD with an elastic model of 
CSD. Furthermore, a simulator pipeline is given in this paper. Initial implementation 
results have been shown and challenges discussed. 
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Abstract. In the present paper, we introduce an integrated framework
for detecting peripheral sympathetic responses through purely imaging
means. The measurements are performed on three facial areas of sym-
pathetic importance, that is, periorbital, supraorbital, and maxillary. To
the best of our knowledge, this is the first time that the sympathetic
importance of the maxillary area is analyzed. Because the imaging mea-
surements are thermal in nature and are composed of multiple compo-
nents of variable frequency (i.e., blood flow, sweat gland activation, and
breathing), we chose wavelets as the image analysis framework. The im-
age analysis is grounded on GSR signals, which are still considered the
golden standard in peripheral neurophysiological and psychophysiologi-
cal studies. The experimental results show that monitoring of the facial
channels yields similar detecting power to GSR’s.

1 Introduction

The Autonomic Nervous System (ANS) and particularly its sympathetic division
has been the object of intense study in neurophysiology and psychophysiology.
The sympathetic division readies the body for a crisis that may require sudden,
intense physical activity. It is a primal survival mechanism. Therefore, interest
on methodologies that scrutinize sympathetic responses is well founded and has
many applications.
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When sympathetic activation occurs, an individual experiences increased ac-
tivity in the cardiovascular and respiratory centers of the pons and medulla ob-
longata, leading to elevations in blood pressure, heart rate, breathing rate, and
depth of respiration. These vital sign changes are mediated through adrener-
gic postganglionic fibers. Determination of sympathetic activation through vital
sign monitoring is not always straightforward.

As an alternative, researchers focused their efforts on sympathetic manifes-
tations effected through cholinergic postganglionic fibers. These fibers innervate
sweat glands of the skin and the blood vessels to skeletal muscles and the brain.
They provide a pathway to stimulating sweat gland secretion and selectively
enhancing blood flow to muscles.

In this context, Electro-Dermal Activity (EDA) has been the gold standard
for peripheral monitoring of sympathetic responses. EDA is measured through
the Galvanic Skin Response (GSR), which is a simple and reproducible method
for quantifying sweat gland activation in the palm. Alternatively, EDA can be
captured through a palm thermistor, which registers the full thermoregulatory
phenomenon including changes both in blood flow and sweat gland activation.
In our case, this is a useful yardstick, as it provides palm information similar to
the one thermal imaging provides for the face.

Indeed, in recent years, we have demonstrated that during arousal addi-
tional physiological signs materialize on the face. Specifically, we have shown
that increased blood flow in the periorbital [1][2] and supraorbital [3] areas are
ubiquitous manifestations of stress. We have also developed a thermal imaging
methodology to extract both the periorbital and supraorbital signals.

In the present paper, we link traditional probe-based with the newer image-
based neurophysiological methodologies. We study comparatively the periorbital,
supraorbital, and palm channels (GSR and thermistor) within a classic repeated
arousal experiment. First, we introduce a novel modeling methodology to quan-
tify the GSR signal and validate the arousal experiment. In addition, we demon-
strate that concomitantly to the palm area, strong sweat gland activation is
manifested in the maxillary area. This is one more sympathetic thermoregula-
tory phenomenon manifested on the face. Therefore, it can be sensed and com-
puted through thermal imaging. We apply a wavelets analysis method for all
channels (periorbital, supraorbital, maxillary, GSR, and palm thermistor). The
results reveal tonic (baseline) and phasic (event related) affinity of the three
imaging channels to the GSR and palm thermistor channels. We also identify
the presence of a breathing component in the maxillary signal.

Our research brings to the fore the pivotal role of facial physiology in the
manifestation of stress and establishes the methodological framework for sensing
peripheral sympathetic responses through imaging means.

In the rest of the paper we unveil our new imaging methodology for model-
ing and analyzing the facial sympathetic channels. Specifically, in section 2, we
describe the method itself. In section 3, we report and discuss its experimental
validation.
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2 Methodology for Signal Modeling and Analysis

2.1 Modeling of GSR Signal

The first goal is to model the GSR signal and be able to draw inferences about
the repeated arousal effect on each subject. This is very important, as GSR is the
ground-truth in our studies and validation of ground-truth is a prerequisite for
meaningful comparative studies. Specifically, our modeling scheme needs to show
that individuals tend to habituate and therefore, GSR amplitudes tend to reduce,
latencies tend to increase, and wave-shapes tend to remain unaltered. These well-
established and understood patterns of repeated arousals in normal subjects, if
quantified here, they will validate our experimental design and execution.

As we will discuss in the Experimentation Section, we stimulate the subjects
with 3 auditory startles spaced at least 1 min apart. For this reason, we choose
to split the GSR signal in three non-overlapping segments:

– S1: 2 sec before first startle until 2 sec before second startle
– S2: End of S1 to 2 sec before third startle
– S3: End of S2 to end of experiment

We divide each of the segments S1, S2, and S3 into three subsegments:

– LS: The Left Subsegment, which spans from the beginning of the segment
till the maximum value (shortly after startle).

– RS: The Right Subsegment, which spans from the maximum value till the
end of the segment.

– LSOS: The Left Stimulus Onset Subsegment, which starts at the time of
the startle and lasts until the maximum value is reached. It is portion of LS
and is useful in estimating the habituation effect.

The GSR signal around the stimulus is formed by the charging and discharg-
ing of an RC circuit, which closes on the palm skin during emotional sweat gland
activation. Charging corresponds to arousal (LS) and it is characterized by an
exponential increase. Discharging corresponds to arousal waning (RS) and it
follows an exponential decay. For this reason, we choose the Laplace distribution
to model the GSR signal. The probability density function is given by:

f(t|μ, β) =
1
2β
exp

(
−|t− μ|

β

)
, (1)

where μ (mean) denotes the time parameter, while β > 0 is the scale parameter.
Although, the GSR signal is not symmetric around the local maximum value,

the Laplace distribution is. This led us to model separately LS and RS for
every segment (see Fig. 1). For LS we fit a truncated Laplace distribution where
the μ parameter is assumed to be known (location of the maximum) and the
distribution is censored to the right of the maximum. Similarly, for RS we use a
truncated Laplace distribution where the values at the left of the maximum are
censored. The goal then is to estimate the scale parameters of the left and right
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Fig. 1. GSR segments S1, S2, and S3 along with the fitted Laplace values for subject
Sub1. The stimuli occurrences have been marked appropriately.

distributions (i.e., βL and βR). This estimation is done through the Ordinary
Least Squares (OLS) method.

For LS where t ≤ μ, we have:

y = f(t) =
1

2βL
exp

(
−μ− t
βL

)
⇒ ln(y) =

[
− μ

βL
− ln(2βL)

]
+

1
βL
t, (2)

so that time t and logarithmic scale ln(y) are linearly related. We use OLS to
estimate the slope, whose inverse is the parameter of interest βL.

For RS where t ≥ μ, we have:

y = f(t) =
1

2βR
exp

(
− t− μ
βR

)
⇒ ln(y) =

[
μ

βR
− ln(2βR)

]
− 1
βR
t, (3)

so that time t and logarithmic scale ln(y) are linearly related. We use OLS to
estimate the slope, whose negative inverse is the parameter of interest βR.

For LSOS we apply linear (versus exponential) fitting, as these subsegments
are nearly impulsive.

2.2 Wavelets Analysis of Sympathetic Signals

We extract thermal signals from three facial areas: periorbital, supraorbital, and
maxillary. In all three cases the regions of interest are tracked using the coali-
tional tracking method we reported in [4]. In the periorbital area, the extracted
signal is formed from the evolution of the mean thermal footprint of the facial
arteriovenous complex. This footprint is segmented via a fuzzy segmentation al-
gorithm, which is seeded in the initial frame with two points in the inner orbital
areas (see Fig. 2). On each subsequent frame, the seeds are adjusted with help
from the coalitional tracker. In the supraorbital area, the extracted signal is
formed from the evolution of the mean thermal footprint of the entire region of
interest. In the maxillary area, the extracted signal is formed from the evolution
of the mean thermal footprint of the entire region of interest.

The periorbital thermal signal is a correlate of the blood supply to the orbital
muscle. The supraorbital thermal signal is a correlate of the blood supply to
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Fig. 2. Periorbital, supraorbital, and maxillary regions of interest and the respective
mean thermal signals along the timeline. The periorbital measurement is strictly local-
ized on the thermal footprints of the facial artery.

the corrugator muscle. It may also be slightly modulated from the activation
of sweat glands in the forehead. The maxillary thermal signal is a correlate
of the blood perfusion in the respective area. Based on our observations, it is
also heavily modulated from the activation of local sweat glands. Finally, the
maxillary signal is periodically modulated from the thermal effect of breathing,
due to the proximity of nostrils.

Concomitantly with the three facial imaging signals, we extract palm per-
spiratory and thermal signals through GSR and thermistor sensors respectively.
We also extract the breathing signal through a piezo-respiratory belt transducer.
All probe signals (GSR, palm thermistor, and respiratory belt) are synchronized
with the thermal imager through an electronic circuit.

The stress content of the GSR signal has been documented in the literature
exhaustively [5][6][7]. To associate this content to the facial imaging signals, we
use a multi-resolution wavelets approach. The typically noisy profile of facial
signals (see Fig. 2) and the confounding phenomena that form them, do not
allow direct modeling of their raw waveforms, as in the case of GSR (see Fig. 1).
Therefore, component isolation and noise reduction are necessary.

Specifically, we consider that all signals if they are of sympathetic importance
they have either a strong phasic or tonic component [8]. The phasic component
should be at a scale that matches the inter-stimulus interval of the experiment,
while the tonic component will reside at an even higher scale that spans the entire
experimental time-line. Any strong extraneous modulation (e.g., breathing) in
some signals should be evident in a lower scale (i.e., higher frequency), far away
from the phasic and tonic scales.

To quantify the contribution of phasic, tonic, and other components in the
signals we apply a Continuous Wavelet Transform (CWT) with a Daubechies-10
mother wavelet. We then compute the energy of each signal in all scales. The
energy curves feature global and local maxima. We analyze these maxima to
understand if they correspond to phasic or tonic responses. We also compare
their relative contributions in each signal.
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3 Experimentation and Discussion

We used a high quality Thermal Imaging (TI) system for data collection. The
centerpiece of the TI system is a ThermoVision SC6000 Mid-Wave Infrared
(MWIR) camera [9] (NEDT=0.025◦C). We recorded 10 thermal clips from the
faces of 10 subjects while resting in an armchair. Concomitantly, we recorded
ground-truth GSR, palm thermistor, and piezo-respiratory signals with the Pow-
erLab 8/30, ML870 data acquisition system [10]. The data set features subjects
of both genders, different races, and with varying physical characteristics. The
subjects were focused on a mental task while they were measured through the
thermal imaging and contact sensors. The experiment lasted 4 min. After the
first minute the first auditory startle was delivered and after that two more were
delivered spaced at least 1 min apart. The experiment ended about 1 min after
the delivery of the third startle.

3.1 GSR Results

We applied the modeling methodology detailed in Section 2.1 to each segment
of every GSR waveform. Therefore, we had 3 segments (S1, S2, S3) × 3 sub-
segments (LS, RS, LSOS) × 10 subjects = 90 cases for which we needed to
estimate the scale parameter β (Laplace fitting for LS and RS) or the slope (lin-
ear fitting for LSOS). The results are shown in Table 1 and elicit the following
conclusions:

– For all stimuli (S1, S2 and S3) LS has a much smaller scale parameter than
RS indicating that the phenomenon causes a steep increase and then decays
at a much lower rate.

– Comparing the LS parts of S1, S2, and S3, within the same subject, we
observe that usually the 1st stimulus causes the steepest increase and as we
move to subsequent stimuli the response is less steep (i.e., the βL parameter
is increasing).

– Comparing the RS parts of S1, S2, and S3, within the same subject, we
observe that usually the subject recovers slowly after the 1st stimulus (i.e.,
it has a high βR parameter). Recovery from subsequent stimuli is becoming
faster (smaller βR parameter).

– Comparing the LSOS parts of S1, S2, and S3, within the same subject,
we observe that the estimated (positive) slope of the linear regression is
decreasing as we move from S1 to S2 to S3 (habituation).

These conclusions are in accordance with the expected behavior of normal sub-
jects, and therefore our experiment is valid.

3.2 Comparative Wavelets Analysis Results

We applied the wavelets analysis methodology detailed in Section 2.2 for all 6
sympathetic signals from all 10 subjects. Fig. 3 shows the wavelet energy curves
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Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10

S1-LS 2.18 2.68 1.70 1.94 7.50 14.54 4.79 25.39 4.50 3.87

S1-LSOS 0.20 0.10 0.15 0.14 0.13 0.05 0.06 0.05 0.08 0.12

S1-RS 30.40 33.90 27.11 40.89 36.88 82.50 151.47 38.76 68.08 25.24

S2-LS 3.75 3.04 1.77 8.49 5.69 26.16 7.89 13.13 8.29 9.37

S2-LSOS 0.11 0.07 0.13 0.08 0.12 0.03 0.10 0.04 0.10 0.11

S2-RS 13.39 29.46 34.11 62.67 22.46 53.43 44.81 20.71 61.65 30.69

S3-LS 1.91 2.51 2.30 10.13 2.51 62.46 15.09 2.28 10.63 5.49

S3-LSOS 0.09 0.09 0.12 0.06 0.12 0.01 0.03 0.08 0.07 0.08

S3-RS 17.93 11.36 34.25 66.67 19.12 31.53 81.62 108.44 25.21 13.44

Table 1. The estimated β parameters for the LS and RS Laplace distributions along
with the linear regression slope estimates of LSOS.

in lower and higher scales of subject Sub1. In lower scales (i.e., 50-250) the
piezo-respiratory signal (Brt) appears to have a dominant component, as it is
manifested by the high bell-shaped bulge. This is in accordance with its expected
function. The second most prominent component is featured by the maxillary
signal (M). This verifies our hypothesis of breathing modulation for this signal,
as it is sampled in proximity to the nostrils.

In higher scales, (i.e., 1000-3000) the GSR signal (GSR) appears to have a
dominant component, as it is manifested by the high bell-shaped bulge. This is
the phasic component as the scale is about 1/3 of the total scale and matches
the period of the repeated stimuli in our experiment. The strong presence of a
phasic component in the GSR signal is consistent with its nature. The fascinat-
ing result here is the almost equally strong phasic component in the maxillary
signal (M). This is consistent with our hypothesis of strong sweat gland acti-
vation in the maxillary area concomitant to the palm area. Other facial signals
(i.e., periorbital-P and supraorbital-S) also have significant but relatively weaker
phasic components, which verifies their sympathetic relevance.

At the highest scales that span almost the entire timeline resides the tonic
component of the signals. It is worth noting that the GSR signal has the smallest
tonic component of all sympathetic channels. This is consistent with the almost
unimodal nature of the GSR channel. The maxillary signal (M), which is its facial
equivalent, has a much stronger tonic component. In contrast to the GSR signal,
the maxillary signal contains not only local sweat gland activation information,
but also thermal information related to changes in local blood perfusion. In this
sense, the maxillary signal (M) is probably closer to the palm thermistor (Thr)
signal.

In general, adrenergic and cholinergic signal components reside in nonover-
lapping scales, which makes the adopted multi-resolution approach an ideal anal-
ysis tool. The picture emerging from the analysis of the wavelet energy curves
for subject Sub1 remains relevant for all the other 9 subjects in our dataset.
Fig. 4 shows the mean energy of tonic, phasic, and breathing components of
the various sympathetic channels for the entire data set. All the conclusions ex-
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(a) (b)

Fig. 3. Wavelet energy curves of subject Sub1 for all 6 sympathetic channels in (a)
lower and (b) higher scales.

tracted through the example of subject Sub1 still apply for the thus statistically
constructed mean subject.

Fig. 4. Mean tonic, phasic, and breathing energy components for the various sympa-
thetic channels.
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A novel partnership between surgeons and machines, made possible by advances in computing 
and engineering technology, could overcome many of the limitations of traditional surgery. By 
extending the surgeons' ability to plan and carry out surgical interventions more accurately and 
with less trauma, Computer-Integrated Surgery (CIS) systems could help to improve clinical 
outcomes and the efficiency of health care delivery. CIS systems could have a similar impact 
on surgery to that long since realized in Computer-Integrated Manufacturing (CIM). 
Mathematical modeling and computer simulation have proved tremendously successful in 
engineering. Computational mechanics has enabled technological developments in virtually 
every area of our lives. One of the greatest challenges for mechanists is to extend the success 
of computational mechanics to fields outside traditional engineering, in particular to biology, 
biomedical sciences, and medicine. The workshop provided an opportunity for computational 
biomechanics specialists to present and exchange opinions on the opportunities of applying 
their techniques to computer-integrated medicine. 


