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Preface 

A novel partnership between surgeons and machines, made possible by advances in 
computing and engineering technology, could overcome many of the limitations of 
traditional surgery. By extending surgeons' ability to plan and carry out surgical 
interventions more accurately and with less trauma, Computer-Integrated Surgery (CIS) 
systems could help to improve clinical outcomes and the efficiency of health care 
delivery. CIS systems could have a similar impact on surgery to that long since realized 
in Computer-Integrated Manufacturing (CIM). Mathematical modelling and computer 
simulation have proved tremendously successful in engineering. Computational 
mechanics has enabled technological developments in virtually every area of our lives. 
One of the greatest challenges for mechanists is to extend the success of computational 
mechanics to fields outside traditional engineering, in particular to biology, the 
biomedical sciences, and medicine.  

Computational Biomechanics for Medicine Workshop series was established in 
2006 with the first meeting held in Copenhagen. This year, the tenth workshop was 
again held in conjunction with the Medical Image Computing and Computer Assisted 
Intervention (MICCAI) Conference in Munich, Germany, on 5 October 2015. It 
provided an opportunity for specialists in computational sciences to present and 
exchange opinions on the possibilities of applying their techniques to computer-
integrated medicine.  

This year the selection process was as rigorous as ever. After a careful review of 
the submitted full length manuscripts, 18 papers have been accepted for presentation 
and are collected in this volume. The proceedings also include two invited lectures by 
world-leading researchers Professor Ron Kikinis from Harvard Medical School, USA 
and Fraunhofer MEVIS, Germany, and Professor Stephane Cotin from INRIA, France. 

Computational Biomechanics for Medicine X proceedings are organized into two 
parts: “Biomechanics of Solids” and “Vascular System and the Brain”, discussing: 

 Medical image analysis 
 Algorithm development  
 Patient-specific simulations 

Information about Computational Biomechanics for Medicine Workshops, 
including Proceedings of previous meetings is available at http://cbm.mech.uwa.edu.au/. 

We would like to thank the MICCAI 2015 organizers for help with administering 
the Workshop, the invited lecturers for deep insights into their research fields, the 
authors for submitting high quality work, and the reviewers for helping with paper 
selection. 

Grand R. Joldes 
Barry Doyle 
Adam Wittek 
Poul M.F. Nielsen 
Karol Miller 
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Medical Image Computing Meets Biomechanics 

Ron Kikinis 

Director, Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, 
Harvard Medical School, Boston, MA 

Professor of Radiology at Harvard Medical School 
Institute Director of Fraunhofer MEVIS  

Honorary Professor of Medical Image Computing at the University of Bremen 

Abstract 

Medical Image Computing (MIC) is of increasing importance as the amount and 
complexity of data produced by medical imaging devices is increasing steadily. A large 
community of researchers has evolved during the past decades, investigating this topic and 
creating a large body of knowledge about algorithmic approaches. MIC is among the 
foundational technologies for computational biomechanics. On the other hand, results from 
computational biomechanics are often used as a start point for work in MIC. The presentation 
will discuss this relation using specific examples.  
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Improving patient safety through real-time numerical 
simulation 

Stephane Cotin 

Research Director, Head of the MIMESIS team 
INRIA, Nancy Grand Est, 54603 Villers-les-Nancy, France 

Abstract 

The variety, complexity and essential role of modern medicine have been a strong 
motivation for many recent scientific developments. While medical imaging has become an 
integral part of today's medicine, new fields are emerging, such as robotics, simulation, 
augmented reality, or workflow analysis. In this talk I will highlight the increasingly important 
role of (real-time) numerical simulation in various domains, such as training, but also for 
planning and in the assistance of complex interventions. I will illustrate the impact of simulation 
through a series of results in various areas of medicine, such as interventional radiology, 
ophthalmology, and laparoscopic surgery. Finally I will discuss some of the remaining 
challenges that still hinder the use of computational anatomy and simulation in medicine.  
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Part I 

Biomechanics of Solids  
 ___________________________
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Computer Assisted Planning of Periacetabular 
Osteotomy with Biomechanical Optimization: 

Constant Thickness Cartilage Models vs. Patient-
specific Cartilage Models 

L. Liu¹, T.M. Ecker², S. Schumann¹,  K.A. Siebenrock², G. Zheng¹

¹ Institute for Surgical Technology and Biomechanics, 

University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland 

{li.liu,guoyan.zheng}@istb.unibe.ch 

² Department of Orthopaedic Surgery, Inselspital, University of Bern, 3010 Bern, Switzerland 

Abstract   Periacetabular osteotomy (PAO) is an effective approach for surgical 
treatment of hip dysplasia in young adults. The aim of PAO surgery is to increase 
acetabular coverage of the femoral head and to reduce contact pressures by reorienting 
the acetabulum fragment during PAO. The success of PAO significantly depends on 
the surgeon's experience. Previously, we have developed a computer assisted planning 
and navigation system for PAO, which allows for not only quantifying the 3D hip 
morphology with geometric parameters such as acetabular orientation (expressed as 
inclination and anteversion angles), Lateral Center Edge (LCE) angle and femoral 
head coverage for a computer assisted diagnosis of hip dysplasia but also virtual PAO 
surgical planning and simulation. In this paper, we extend our system with a patient-
specific 3D finite element (FE) model to estimate the optimal acetabulum reorientation 
for planning PAO. One key factor that may influence the biomechanical optimization 
results is the cartilage models used in the FE simulation. In the literature, both constant 
thickness cartilage models and patient-specific cartilage models have been suggested. 
Another contribution of our paper is the investigation of the effect of these two 
different cartilage models on the biomechanical optimization results. Regression 
analysis showed that the results obtained by the constant thickness cartilage models 
are significantly correlated with those obtained by using the patient-specific cartilage 
models. Furthermore, biomechanical optimization-based planning of PAO using these 
two different cartilage models achieved the same optimal orientations. 
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Introduction 

Periacetabular osteotomy (PAO) is an effective approach for surgical treatment of hip 
dysplasia in young adults [1]. The aim of PAO surgery is to increase acetabular 
coverage of the femoral head and to reduce contact pressures by realigning the hip 
joint. It was reported [6] that PAO planning approach is mainly based on two types of 
optimization strategies which are morphology-based and biomechanics-based 
optimization, respectively.  

Both 2D and 3D images have been used in morphology-based planning of PAO 
surgeries. Clohisy et al. [2] reported that hip specialists identify important 
radiographic features of the hip on plain radiographs for diagnosis of pathological 
hips. As it is known that one dimensional information is missing with X-ray imaging 
due to the nature of projection, CT has been used as a more accurate and informative 
way of analyzing the morphology of the hip. Klaue et al. [3] proposed a CT evaluation 
method estimating coverage and congruency of hip joint. They made a topographical 
map of the acetabulum and the femoral head from the cross section images of CT scan 
and calculated the acetabular coverage. More recently, Dandachli et al. [4] described a 
new CT-based evaluation method for dysplastic hip from the weight bearing surface 
point of view. All these previously introduced methods [3, 4] quantify the morphology 
of dysplastic hips with pure geometrical measurements.  

The other type of planning strategy is based on biomechanics optimization. Zhao et 
al. [5] conducted a 3D finite element (FE) analysis of acetabular dysplasia. The effects 
of dysplasia and PAO were both investigated by analyzing the change of Von Mises 
stress in the cortical bone before and after surgery. They showed that the PAO may be 
beneficial.  One limitation of this method lies in the fact that the acetabular dysplastic 
model representing different levels of severity of dysplasia were generated by 
deforming the acetabular rim of a normal hip. Thus, it ignores the influence of the 
abnormal acetabulum of the real dysplastic hip.  In contrast, the computer assisted 
Biomechanical Guidance System (BGS) introduced by Armand et al. [6] combines 
geometric and biomechanical feedback with intra-operative tracking to guide the 
surgeon through the PAO procedure. During the planning stage, the PAO planning 
computes contact pressures via Discrete Element Analysis (DEA) in order to suggest a 
reorientation of the acetabulum that minimizes simultaneous peak contact pressure in 
sitting, standing, and walking positions [7]. Recently, Zou et al. [8] developed a 3D FE 
simulation of PAO and validated their method on 5 models generated from CT scans 
of dysplastic hips. The acetabulum of each model was rotated in 5° increments in the 
coronal plane from original lateral center edge (LCE) angle, and the relationship 
between contact area and pressure and Von Mises stress in the femoral and pelvic 
cartilage were investigated until the optimal position for the acetabulum following 
PAO was found. However their virtual PAO procedure was performed with 
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commercial FE analysis software Abaqus (Dassault Systèmes Simulia Corp, USA) 
which does not have a precise virtual reorientation planning tool for an accurate 
quantification of patient-specific 3D hip joint morphology. 
Previously, we have developed a computer assisted planning and navigation system 
for PAO [9], which allows for not only quantifying the 3D hip morphology with 
geometric parameters such as acetabular orientation (expressed as inclination and 
anteversion angles with respect to the so-called Anterior Pelvic Plane (APP) [10]), 
LCE angle and femoral head coverage for a computer assisted diagnosis of hip 
dysplasia but also virtual PAO surgical planning and simulation (Fig. 1). In this paper, 
based on this previously developed PAO planning system, we developed a patient-
specific 3D FE model to estimate the optimal acetabulum reorientation for planning 
PAO. One key factor that may influence the biomechanical optimization results is 
related to the cartilage models used in the FE simulation. In the literature, both 
constant thickness cartilage models [8] and patient-specific cartilage models [11] have 
been suggested. However, little is known about how different cartilage models used in 
the FE simulation may further affect the biomechanical optimization based PAO 
planning. Our aim is to investigate the influence of these two different cartilage 
models on the biomechanical optimization results. 

 

 
Fig. 1. Schematic view of our computer assisted planning of PAO with biomechanical optimization. 
A. Computer assisted morphology based PAO planning. Virtual osteotomy operation is done with a 
sphere, whose radius and position can be interactively adjusted, and virtual reorientation operation is 
done by interactively adjusting anteversion and inclination angle of the acetabulum fragment; B. 
Biomechanical optimization; C. the pre-operative planning output. 
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Fig. 2. Biomechanical simulation of contact pressure on acetabular cartilage (A) Surface models of a 
dysplastic hip; (B) Volume meshes of a dysplastic hip; (C) Surface models for a planned situation 
after acetabulum fragment reorientation; (D) Volume meshes for the planned situation; (E) Boundary 
conditions and loading for biomechanical simulation; (F) Coarse meshes for bone models, and refined 
meshes for cartilages. 

Materials and Methods 

System Overview 

The workflow of the computer assisted planning of PAO with biomechanical 
optimization is shown in Fig. 1. The input is 3D surface models of pelvis, femur and 
their respective cartilages generated from pre-operatively acquired CT arthrography 
data using a commercially available segmentation program (AMIRA, Visualization 
Sciences Group, Burlington, MA). The system starts with a fully automatic detection 
of the acetabular rim, which allows for quantifying the acetabular morphology with 
parameters such as acetabular version, inclination, LCE angle, femoral head extrusion 
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index (EI), femoral head coverage ratio (CO) for a computer assisted diagnosis [9]. 
Afterwards, the system offers the possibility to perform a virtual osteotomy (see Fig. 
1. A (1)) and reorient the acetabular fragment. During the acetabulum fragment 
reorientation, acetabular morphological parameters are computed in real-time (see Fig. 
1. A (2)). In order to estimate the optimal acetabulum reorientation for planning PAO, 
our system is extended with a patient-specific finite element prediction of cartilage 
contact stress change before and after PAO reorientation planning. An optimal 
position of the acetabulum can be achieved, which maximizes contact area and at the 
same time minimizes peak contact pressure in pelvic cartilage (see Fig. 1 (B)). 

Biomechanical Model of Hip Joint 

Cartilage models (constant thickness cartilage vs. patient-specific cartilage) 

In the literature, both constant thickness cartilage models and patient-specific cartilage 
models have been suggested. For instance Zou et al. [8] created the cartilage layer on 
acetabular surface by expanding a constant thickness of 1.8 mm. Harris et al. [11] 
introduced a CT arthrography protocol for excellent visualization patient-specific 
cartilage geometry. In our study, the patient-specific cartilage models were generated 
from the CT arthrography data for the subjects with traditional acetabular dysplasia 
[23]. The constant thickness cartilage models were generated by expanding a constant 
thickness using 3D dilation operation on articular surface. 

Mesh Generation 

 
Bone and cartilage surface models of the reoriented hip joints were imported into 
ScanIP software (Simpleware Ltd, Exeter, UK) as shown in Fig. 2 (A) and (C). 
Surfaces were discretized using tetrahedral elements (Fig. 2 (B) and (D)). Since the 
primary concern was focused on the joint contact, a finer mesh was employed for the 
cartilage than for the bone. Refined tetrahedral meshes were constructed for the 
cartilage models (~106672 elements for femoral cartilage model, and ~55476 elements 
for pelvic cartilage model  using ScanFE module (Simpleware Ltd, Exeter, UK). 
Cortical bone surfaces were discretized using coarse tetrahedral elements (~99023 
elements for femoral model, and ~128745 elements for pelvic model). Trabecular bone 
was not included in the models, as it only has a minor effect on the predictions of 
contact stress as reported in [13].  
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Material property 

Pelvic and femoral cartilages were modeled as homogeneous, isotropic, and linearly 
elastic material with Young's Modulus E = 15 MPa and Poisson’s ratio ν = 0.45 as 
reported in [8]. Cortical bone of pelvis and femur were modeled as homogeneous, 
isotropic material with elastic modulus E = 17 GPa and Poisson’s ratio ν = 0.3 as 
suggested in [8]. 

 
Fig. 3. Contact pressure distribution obtained by using  two different cartilage models at different 
acetabular reorientation position 

 

Boundary Conditions and Loading 

Tied and sliding contact constraints were used in Abaqus/CAE 6.10 (Dassault 
Systèmes Simulia Corp, USA) to define the cartilage-to-bone and cartilage-to-cartilage 
interfaces, respectively. It has been reported in [11] that the friction coefficient 
between articular cartilage surfaces was very low (0.01–0.02 in the presence of 
synovial fluid) [14]. Therefore, it is reasonable to neglect frictional shear stresses 
between contacting articular surfaces. The loading and boundary conditions used in 
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this paper resembled those used by Phillips et al. [15] (Fig. 2 (E)). The top surface of 
pelvis and pubic areas were fixed, and the distal end of the femur was constrained to 
prevent displacement in the body x and y directions while being free in vertical z 
direction (Fig. 2 (E)). The center of femoral head derived from a least-squares sphere 
fitting was selected to be the reference node. The nodes of femoral head surface were 
constrained by the reference node via kinematic coupling. The fixed boundary 
condition model was then subjected to a loading condition as published in [16], 
representing a single leg stance situation with the resultant hip joint contact force 
acting at the reference node. Although CT scan was performed in the supine position 
and the loading condition of our biomechanical simulation is based on one-leg stance 
situation [16], previous work [17] has shown that there was no significant difference 
between the contact pressure in the one-leg stance reference frame and those in the 
supine reference frame. In addition, as pointed out by Armiger et al. [7], it is not an 
infrequent clinical practice to use models derived from the supine frame to do 
biomechanical simulation of the standing frame. Therefore we believe that our model 
makes good use of valuable, available data from the original Bergmann’s work [16]. 
Following the loading specification in [15], the components of joint contact force 
along 3 axes were given as 195N, 92N, and 1490N, respectively, by assuming a 
constant body weight of 650N for all subjects to remove any scaling effect of body 
weight on the absolute value of the contact pressure. The resultant force was applied 
based on anatomical coordinate system described in Bergmann et al [16], whose local 
coordinate system was defined with the x axis running between the centers of the 
femoral heads (positive running from the left femoral head to the right femoral head), 
the y axis pointing directly anteriorly, and the z axis pointing directly superiorly. 

Statistics.  

Linear regression was used to determine associations between the biomechanical 
results obtained by the constant thickness and the patient-specific cartilage models. 
For linear regression analysis, independent variables were defined as the 
biomechanical results obtained by the constant thickness cartilages. Dependent 
variables were defined as the biomechanical results obtained by the patient-specific 
cartilage models. Pearson's correlation coefficient r was interpreted as "poor" below 
0.3, "fair" from 0.3 to 0.5, "moderate" from 0.5 to 0.6, "moderately strong" from 0.6 to 
0.8, and "very strong" from 0.8 to 1.0. Significance level was defined as p<0.05. 
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Study Design and Results 

Two studies were designed and conducted on CT arthrography data of three patients 
with acetabular dysplasia [23]. The first study is designed to estimate the optimal 
orientation after a computer assisted planning of PAO based on a 3D FE simulation. 
Specifically, the acetabulum fragment is virtually rotated about the y axis (Fig. 2 (E)) 
in 5° increment onto the APP from the original acetabulum inclination angle towards 
lateral direction (see Fig. 2 (C)). The predicted peak contact pressure and total contact 
area are directly extracted from the output of Abaqus. We then compared 
quantitatively the peak contact pressure and contact area on acetabulum cartilage in 
different acetabulum position and estimated optimal orientation in static one-leg stance 
loading scenario. 

Fig. 3 shows how contact pressure distribution of the pelvic cartilage changed for a 
dysplastic hip when LCE angle was increased. The contact area originally focused on 
the anterosuperior region and almost no contact area was in the anterior and posterior 
regions. When the LCE angle was increased, the contact area shifted from lateral 
region towards the medial region. Fig. 4 (A) and (B) show peak contact pressures and 
contact area at different LCE angles, respectively. An optimal acetabulum fragment 
reposition with minimum peak contact pressure and maximum contact area was 
achieved for three dysplastic hips. More importantly, for each hip, both the minimal 
peak contact pressure and the maximum contact area were achieved at the same 
acetabulum fragment reposition. A large rotation of acetabulum does not guarantee 
low peak contact pressure and large contact area. 

The second study is designed to investigate the effect of these two different 
cartilage models on the biomechanical optimization results. Fig. 3 qualitatively shows 
that  contact pressure distribution obtained by using two different cartilage models was 
similar. Regression analysis quantitatively shows that the results obtained by the 
constant thickness cartilage models are significantly correlated with those obtained by 
using the patient-specific cartilage models. Specifically, a very strong correlation is 
between the peak contact pressure obtained by two different cartilage models (r= 0.93 
> 0.8, p=0.013 < 0.05) (see Fig. 4 (C)), and a moderate strong correlation is between 
the total contact area obtained by two different cartilage models (r= 0.72 [0.6, 0.8] , 
p=0.16). Furthermore, biomechanical optimization-based planning of PAO using these 
two different cartilage models achieved the same optimal orientations (see Fig. 4 
(D)(E)). 
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Discussion and Conclusions 

In this paper, we developed a patient-specific FE model for optimization of the 
acetabulum reorientation based on our previously developed computer assisted 
planning system. Because articular cartilage is a key component to affect 
biomechanical optimization results, we further investigated the influence of patient-
specific and constant thickness cartilage models on the biomechanical optimization 
results. Regression analysis showed that the results obtained by the constant thickness 
cartilage models are significantly correlated with those obtained by using the patient-
specific cartilage models. Furthermore, biomechanical optimization-based planning of 
PAO using these two different cartilage models achieved the same optimal 
orientations. 

It is known that the purpose of PAO is to increase acetabular coverage of the 
femoral head and thereby decrease contact pressure over the cartilage surface [18], but 
a limitation common to all these previously introduced methods [2-4] is that they only 
provide a pure morphology-based assessment and/or planning without considering the 
biomechanical effect of the reorientation planning. This has motived the recent 
introduction of various systems based on biomechanical optimization [5-8]. The BGS 
introduced by Armand et al. [6] performed Discrete Element Analysis (DEA) to 
estimate the contact pressure on a patient-specific model which is a computationally-
efficient method for modeling of cartilage stress while neglecting underlying bone 
stress. Different from the method of Armand et al. [6], we developed a 3D patient-
specific FE model for biomechanical analysis derived from our computer-assisted 
planning system (see Fig. 1. A (1)). The result of our FE simulation study shows that 
our computer assisted planning system with biomechanical optimization indeed 
reduces contact pressures and at the same time increases contact areas, which is 
consistent with the study results reported by Armand et al. [6].  

Compared to the results reported by Zou et al. [8], who developed a 3D FE 
simulation of PAO in order to find optimal reorientation position by minimizing peak 
contact pressure and at the same time maximizing contact area of the cartilage 
surfaces, our results are also consistent with theirs. Both studies have proved that 3D 
FE model is an efficient tool to predict cartilage contact stress change before and after 
PAO reorientation planning [8]. 

Another contribution of our paper is the investigation of the effect of these two 
different cartilage models on the biomechanical results. In the literature, little is known 
about how different cartilage models used in the FE simulation may further affect the 
biomechanical optimization based PAO planning. Niknafs et al. [17] investigated the 
effects of four different cartilage thickness profiles (one uniform and three non-
uniform) and two sets of compressive properties on optimal alignment planning for 
PAO based on the BGS introduced by Armand et al. [6]. The result of their study 
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shows that the predicted optimal alignment of the acetabulum was not significantly 
sensitive to the choice of cartilage thickness distribution over the acetabulum. Our 
experimental results found that 
there was no statistically significant difference for two different cartilage models, 
which is consistent with the findings of Niknafs et al. [17]. Another study was 
introduced by Anderson et al. [19], who analyzed 3D FE models of hip cartilage 
mechanics with simplified geometrical model to investigate the effects on predictions 
of cartilage stress. Their study showed that pressures were slightly different and 
pressure distribution was similar for patient-specific and constant thickness models in 
normal hips. However, their study did not investigate the effect of different cartilage 
models on the biomechanical optimization results during virtual reorientation of 
dysplastic hips. 

It is worth to mention the limitations of the present method. The main limitation is 
that the acetabular labrum was neglected to be included in our FE models of dysplastic 
hips. The role of the labrum during load distribution has been debated. Based on the 
measurements from pressure-sensitive film, Konrath et al. [20] concluded that there 
were slight changes in contact area, mean pressure, or maximum pressure in the 
anterior or superior acetabulum. The only significant change was a decrease in the 
maximum pressure in the posterior aspect of the acetabulum. In contrast, an in vitro 
study by Ferguson et al. [21] found that the labrum has an influence on intra-articular 
fluid pressurization and cartilage layer consolidation in the hip joint. A recent study by 
Henak et al. [22] found that the labrum supported less than 3% of the total load across 
the joint in normal hips. More recently, Henak et al. [23] found that the labrum in 
dysplastic hips has a far more significant role in hip mechanics than it does in normal 
hips. Their study demonstrated that cartilage contact stresses in dysplastic hips are not 
increased significantly compared to normal hips because the labrum supports a large 
percentage of the load transferred across the joint. Therefore inclusion of labrum 
geometry is necessary for more realistic and accurate FE model.  

Another limitation is that a fixed body weight of 650 N derived from Bergmann et 
al. [16] was applied all three dysplastic hips for 3D FE simulation, which is not 
patient-specific. The argument why we adopted such a strategy is that we are aiming 
to compare the relative change of contact pressure before and after PAO reorientation 
planning. Thus, it makes sense to use a constant loading, which was originally 
proposed by Zou et al. [8]. The last limitation of our study is also related with the 
loading conditions for our 3D FE prediction. In our study, data reported by Bergmann 
et al. [17] was used as in vivo contact force for FE simulation, which was obtained 
from patients underwent total hip arthroplasty (THA). This may be overcome by using 
in vivo contact force of dysplastic hip derived from force sensor, which is beyond the 
scope of this paper.  
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In conclusion, this study suggested that our computer assisted planning with FE 
modeling can be a promising PAO planning tool even when it is not feasible to obtain 
CT arthrography data in clinical routine. 

 

 
Fig. 4.  (A) Effect of LCE angle on hip joint peak contact pressure. Circled points represent the lowest 
pressures for each subject; (B) Effect of LCE angle on hip joint contact area. Circled points indicate 
the largest contact areas for each subject; (C) Scatter plot of peak contact pressure obtained by 
constant thickness cartilage models against those obtained by patient-specific cartilage models. The 
solid bar represents regression line; (D) Effect of LCE angle on peak contact pressures predicted by 
two different cartilage models. (E) Effect of LCE angle on contact areas predicted by two different 
cartilage models. 
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Abstract 

The management of knee instability is a complex problem in orthopedic sur-
gery. To comprehensively assess the biomechanical role of the knee joint and to 
investigate various aspects of knee mechanics, several Finite Element (FE) knee 
models have been developed. The full validation of these models against tibio-
femoral and tibio-patellar kinematic data however, as well as the high numerical 
costs associated with the computation of the biomechanical response of the knee 
joint are still main issues. Moreover, the contribution on knee mobility of the dif-
ferent ligaments is still unclear. The aim of this study was therefore to develop a 
FE model with both extensive validation and low computational for the investiga-
tion of the role of ligaments in the joint kinematic behavior. To this end, a 3D FE 
model, consisting of the distal and proximal part of the femur and tibia respective-
ly, the patella, the quadriceps tendon, the cartilage and knee ligaments was devel-
oped in ANSYS. For the model evaluation, 23 fresh frozen knee joints were tested 
in flexion/ extension using a validated device. The model-predicted response was 
within or at the limits of the experimental corridors for all translations and rota-
tions of tibia and patella with regard to the femur. A sensitivity analysis was con-
ducted to evaluate the impact of both the stiffness and initial strain of ligaments on 
the knee kinematic response. Our results showed the high sensitivity of the model 
to the mechanical parameters of the ligaments.  

1 INTRODUCTION 

The management of knee instability is a complex problem in orthopedic sur-
gery. It usually involves the tear or the rupture of a cruciate or collateral ligament 
of the articulation and, in many cases, necessitates surgical operation and ligament 
reconstructions. The rupture of the ACL, in particular, is one of the most frequent-
ly occurring ligament injuries affecting about 1 person in 3000 every year and this 
trend has been constantly increasing with the rise of participation in sports in the 
general population (1). Knee ligamentoplasty has become an issue of high clinical 
interest.  
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The current standard of care is based on ligament reconstruction by autografts 
from tendon tissues, allograft or ligament substitutes. The assessment however of 
the long-term performance of the surgery is complicated by the complex interac-
tion between the graft parameters (pretensioning, fixation method, etc), knee anat-
omy and the mechanical interaction between the graft and the passive anatomical 
structures. To this day, no diagnostic tool is available in clinics to quantitatively 
evaluate and predict the impact of surgery on knee kinematics. This highlights the 
need for the development of tools to investigate the contribution on knee joint 
mobility of the ligaments in the normal knee and to establish proper treatment 
strategies.  

In that respect, many studies have been performed both in vitro (2–5) and in vi-
vo (6–9) to study knee kinematics, some of them focusing on influence of the 
main knee ligaments (10,11) The results varied greatly across studies highlighting 
the high inter-individual variability.  

Several Finite Element (FE) knee models have also been developed in an effort 
to comprehensively investigate various aspects of knee mechanics including con-
tact pressure under various loads (12–18), ligament stress (19–21) or the dynamic 
behavior (14,22,23). A few of them studied knee kinematics (12,14,24,25). The 
high numerical costs associated with the computation of the biomechanical re-
sponse of the knee joint and the full validation of these models against tibio-
femoral and tibio-patellar kinematic data however, are still a main issue (14), par-
ticularly for patellofemoral motion because of uncertainty in patellar tracking.  

A new experimental setup was recently developed combining 3D reconstruc-
tion imaging with the use of a motion capture system for accurate analysis of knee 
joint kinematics at our laboratory (2).  The aim of the present study was to develop 
a FE model capable of reproducing the kinematic of the knee in flexion/extension 
and, building upon the work of Azmy, to validate it with in vitro experimentations 
for the investigating the impact of ligament properties on the knee kinematics. 

2 MATERIALS AND METHOD 

2.1 Finite Element Model 

Geometry: The model developed  in this study is an adaptation of the one pro-
posed by (26). The 3D geometry of the bony structures was acquired using a sen-
sor pen (Fastrack system, Polhemus, olchester, United States), and was carried out 
on a left 63-year-old female lower limb. 
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Figure 1: FE knee model. (a) Isometric view (front) (b) isomeric view (back). The 
femur and tibia were limited to their respective distal and proximal parts. 

Elements & Meshing: The FE mesh, represented in figure 3. consists of the 
distal and proximal part of the femur and tibia respectively, the patella, the quadri-
ceps tendon, the cartilage and knee ligaments. Bones and cartilage were meshed 
with low-order (4-nodes) shell elements, the quadriceps tendon with low-order 
membrane elements and the ligaments with tension-only cables.  

The different ligament bundles were represented: (i) 2 bundles for each Cruci-
ate Ligament (antéro-médial (AM) and postéro-lateral (PL) bundles for the Ante-
rior Cruciate Ligament (ACL); antéro-latéral (AL) and postéro-médial (PM) bun-
dles for the Posterior Cruciate Ligament (PCL)), (ii) 4 bundles for the Collateral 
Ligaments (CoL) (3 for the medial collateral ligament (MCL) and 1 for the fibular 
collateral ligament (LCL)), (iii) 5 bundles for the patellar ligament and (iv) and 7 
for the articular capsule. 

Material properties: The material properties used for each component are 
summarized in tables 1 and 2. Bones and cartilage were defined as linear elastic 
isotropic material in accordance with the literature (27,28). The regions covered 
with cartilage were modeled as a homogeneous bone cartilage material, with aver-
age properties. A thin strip of elements between the bones and cartilage regions 
were also defined with intermediate properties in order to avoid important me-
chanical discontinuity.  

Table 1: Material properties of bones & cartilage 
E (MPa) ν 

Cortical bone and patella 12000 0.3 
Bone/Cartilage inter 2000 0.4 
Bone/Cartilage 250 0.4 
Tendon 90 0.4 

19



The stiffness of the different ligament bundles were chosen in accordance with 
the experimental data reported in literature (29–34). Negative initial strain for pos-
terior cruciate ligament indicates a slack condition. 

Table 2: Material properties of the different ligament bundles 
K (N/mm) Initial strain (%) 

Anterior cruciate ligament (ACL) 75 5 
Posterior cruciate ligament (PCL) 75 -3
MCL 70 0
LCL 20 0

Contact: Four frictionless surface to surface contact zones were created: Femur 
(lateral)/Tibia (lateral), Femur (medial)/Tibia (medial), Femur/Patella, Femur/ 
Quadriceps tendon. The interactions between the ligaments and bones represented 
in the model are not modelled in the present study.  

Boundary Conditions: The experimental boundary conditions (2) were im-
posed : The femur was fixed, the rope and pulley system was represented as 2 ca-
bles driven by temperature and a set of 130 consecutive displacements of 0.5mm 
were applied to the quadriceps tendon. This allowed to generate forces in the ca-
bles that were always directed towards the center of the femoral head. 

Solution: The large deformation static response was computed using an implic-
it solver in ANSYS.  

2.2 Model Evaluation 

Sample preparation: 23 fresh frozen lower limbs were used. The subjects 
from which they were harvested were 47 to 97 years old. Absence of osteoarthritis 
and ligament laxity were checked. Specimens were disarticulated at the head of 
the femur and at the distal epiphysis of the tibia. All the soft tissues were removed 
except for the articular capsule of the knee, the quadriceps tendon, the collateral 
ligaments of the knee (medial and lateral), the patellar ligament and the proximal 
and distal ligaments between the tibia and the fibula. The samples were frozen at -
20°C then thawed at room temperature 12h before experimentation.  

Test bench: The validated test bench, represented in figure 2. was adapted 
from (2). The femur was fixed and the tibia was free. Tension was applied to the 
quadriceps tendon using a weight of 9.8 N. A motor was connected to the tibial pi-
lon by a rope and was used to perform the flexion movement. A progressive dis-
placement was applied at the centroid of the malleolus and directed toward the 
center of the femoral head.  
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 Figure 2: Validated experimental setup used for testing the lower limbs in flex-

ion/extension. (a) Whole set-up with the rope and pulley system for applying the 
flexion. (b) Position of the tripods. 

 
Movement tracking: Tripods were fixed on the femoral diaphysis, the proxi-

mal epiphysis and the patella. During the cycles of flexion/extension, the position 
of the bony segments was tracked with a Polaris optoelectronic system (NDI, Wa-
terloo, Ontario, Canada). 

Anatomical frames: The position of the tripods in their respective anatomical 
frames was calculated from 3D reconstruction made with the EOS® bi-planar x-
ray system. The experimental setup was put in the EOS cabin and bi-planar radi-
ographies were acquired. A geometric reconstruction of the bony structures was 
performed and used for the calculation of the anatomical frames.  

Movement analysis: The variation of relative position tibia/femur and patel-
la/femur was extrapolated using a MATLAB® routine. The rotations were calcu-
lated on mobile axis, with the following sequence (center of rotations): zy’x’’ (y' 
denoting the mobile y axis after the first rotation about z, and x" denoting the mo-
bile x axis after the first 2 rotations). 

2.3 Sensitivity analysis  

A sensitivity analysis was conducted to investigate the impact of ligaments on 
the knee kinematics. The stiffness and initial strain of one or several bundles of 
ligament were modified and the impact in the tibia position was computed. Ten 
cases were considered. These are summarized in table 3. Stiffness values were de-
fined based on data reported in the literature (29–34). Initial strain values were 
chosen so that strains remained below the physiological limit whilst being suffi-
ciently different from one another.  
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Table 3: stiffness and initial strain chosen for the sensitivity cases on the ACL 
 K (N/mm) Initial strain (%) 
 min mean max  min mean max 
ACL bundle 40 75 150 0% 3% 6% 
PCL bundle 40 75 150 3% 0% -4% 
MCL 70 100 120 0% 2% 4% 
LCL 20 60 120 0% 2% 4% 

3 RESULTS 

3.1 Experimental / numerical comparison  

Tibial kinematics: Both the experimental corridor of the tibial kinematics with 
respect to the femur and the numerical results computed with our model are shown 
in figure 3. Our results show that the angular position of the tibia of the finite ele-
ment model is in the physiological corridor. During flexion, the tibial movement 
predicted by the FE model does an internal rotation (fig. 3) of up to -11.9° at 70° 
flexion (while the in vitro experiment are in the corridor [-18.3° ; -7.2°]). Our re-
sults also show a slight adduction : down to -1.71° at 20° flexion and then back to 
-0.26° at 70° of flexion ([-7.1° ; -0.9°] for the in vitro experiments).  

 

 
Fig. 3: Tibial kinematics (with respect to the femur) during the range of motion  
 
Patellar kinematics: Both the experimental corridor of the patellar kinematics 

with respect to the femur and the numerical results computed with our model are 
shown in figure 4. The results obtained using the finite element model are within 
the physiological corridor of the x, y, z rotations and the z translation.  
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Fig. 4: Patellar kinematics (with respect to the femur)  

3.2 Influence on the femoro-tibial kinematics 

The influence of the ligament parameters on the femoro-tibial kinematics is re-
ported in table 5. Mean value and standard deviation of tibia position at 60° flex-
ion for each case. Concerning the Rx rotation (Abduction/Adduction), the liga-
ment that had the most influence was the ACL, followed by the LLE, the PCL and 
MCL holding a smaller influence (SD < 0.35°). The Ry rotation, is mainly influ-
enced by the PCL and the LCL, the PL bundle of ACL holding a smaller influence 
(SD < 1.01°).  The Tx translation was influenced mainly by the ACL and the PCL 
when both bundles are modified at the same time. The Ty translation was influ-
enced mainly by the AM bundle of the MCL and the cruciate ligaments when the 
four ligaments are modified at the same time. The Tz translation is influenced 
mainly by the ACL, the AL bundle of the PCL, and the LCL.  

Despite the numerous contact elements in the model, the computation time was 
below 1h. Model-predicted response was within the experimental corridors for all 
translations and rotations of tibia and patella with respect to the femur, except for 
a ± 2° max discrepancy in the abduction/adduction rotation of the patella. The dif-
ferent ligament parameters appeared to have little effect on the patellar anteri-
or/posterior and inferior/posterior shifts while the kinematic response of the tibial 
anterior/posterior shift was more sensitive. 
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Table 5: Mean value and standard deviation of tibia position at 60° flexion for 
each sensitivity case (The ligament column shows which ligament was modified) 

Ligament  Rx (°) Ry (°) Tx 
(mm) 

Ty 
(mm)  

Tz 
(mm) 

ACL (AM) Mean -1.2 -13.9 -17.3 5.9 3.0 
SD 1.0 0.5 0.5 0.5 0.2 

ACL (PL) Mean -0.5 -15.5 -16.8 5.0 3.0 

SD 0.6 1.0 0.9 0.2 0.2 

ACL (all) Mean -1.3 -14.2 -17.2 5.9 2.9 

SD 1.0 0.3 0.4 0.6 0.2 

PCL (AL) Mean 0.0 -15.6 -17.9 5.1 3.1 

SD 0.1 1.8 0.3 0.1 0.1 

PCL (PM) Mean 0.1 -15.2 -17.7 5.1 3.2 

SD 0.3 1.4 0.2 0.3 0.0 

PCL (all) Mean 0.3 -14.8 -17.2 5.0 3.2 

SD 0.3 3.0 0.8 0.4 0.1 

MCL (all) Mean 0.2 -14.2 -17.7 5.2 3.2 

SD 0.2 0.3 0.1 0.1 0.1 

LCL Mean 0.2 -14.6 -17.6 5.1 3.2 

SD 0.7 1.7 0.2 0.1 0.2 

CoL (all) Mean 0.2 -14.3 -17. 5.1 3.0 

SD 0.7 1.3 0.1 0.1 0.1 
 

4 DISCUSSION 

Very few FE models reported in the literature feature extensive validation 
against both tibio-femoral and tibio-patellar kinematic data. These are paramount 
to comprehensively assess the biomechanical role of the knee joint and to investi-
gate various aspects of knee instability such as knee ligament injuries, ligament 
replacement and ACL graft design. 

In this contribution, a FE of the knee joint capable of reproducing the kinemat-
ics of the knee in flexion/extension for the investigation of the role of ligaments in 
the joint kinematic behavior was created and validated against the experimental 
data of 23 cadavers. Special attention was paid to keep the numerical cost as low 
as possible. Low-order shell elements and cable elements were therefore used to 
discretize the components of the geometric model.  

For both the tibial and patellar kinematics, the results computed with our model 
are inside or at the limit of the experimental corridors. Both the experimental and 
computational results obtained for the femoro-tibial and the femoro-patellar kine-
matics are comparable to the literature. Tables 6 and 7 below summarizes and 
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compares the kinematic values reported in this study with the main values reported 
in the literature.  

Table 6: Comparison of the experimental and computational results with litera-
ture: Kinematics of the femoro-tibial articulation at 60° flexion  

Study specimens Rx 
(°) Ry (°) Tx (mm) Ty 

(mm) 
Tz 

(mm) 
FE model - 0 -11.5 -17.2 7.5  4.9  
In vitro exp 23 -3 ± 3 -12 ± 5.2 -22.5 ± 2.5 5.5 ± 2.5 3.3± 2.7  
(35) 15 -3 ± 3 -16.5 ± 5 -16.7 ± 3.7 7.5 ± 3  4 ± 1.5  
(5) 8 - -11 ± 4 - - - 
(36) 15 - -17.1 ± 1.8 - - - 
[(3)  13 - -6.5 ± 3 -14 ± 5 - - 

Table 7: Comparison of the experimental and computational results with litera-
ture: Kinematics of the femoro-patellar articulation at 60° flexion  

Study specimens Rx 
(°) Ry (°) Tx (mm) Ty 

(mm) 
Tz 

(mm) 
FE model - 0 0.5 -41.5 -20 -34 
In vitro exp 23 -3 ± 3 -3. 5 ± 4.5 -41.5 ± 3.5 -17 ± 3 -41 ± 4
(2) 8 -3 ± 3 0.5 ± 7.5 -38 ± 4 -14 ± 4 -40 ± 8
(5) 8 1.5 ± 3 3 ± 5.5 - - - 
[(37) 6 1 ± 5.5 -1 ± 10 - - - 
(4) 7 0 ± 4 -2 ± 5 - - - 

As for model evaluation, Kiapour et al. (2013) presented extensive validation 
using 16 lower limbs and investigation of several parameters. However, patello-
femoral kinematics was not evaluated. 

The sensitivity analysis conducted on the main ligaments of the tibio-femoral 
articulation highlighted the importance of distinguishing the 2 bundles of the ACL 
and the PCL, since they do not impact the femoro-tibial kinematics in the same 
way: The AM bundle of the ACL exerts more than twice as much influence on Ry 
and Tx, but less than twice as much on Rx and Ty as compared with the PL bun-
dle. Likewise, modifying both bundles of the PCL significantly increases the in-
fluence on Rx, Ry and Tx, but doesn’t have much effect on Ty and Tz. 

Two main limitations of our model are the omission of (i) the meniscus, the 
popliteal tendon and the popliteo-fibular ligament, in order to keep the computa-
tion time as low as possible. This might explain the small experimental-numerical 
kinematic discrepancies and could be taken into account to improve the realism of 
the model. The simplification of the ligament insertion and the absence of liga-
ment/ligament contact could also explain the fact that, in the simulation results, 
the ligament effect remains small. (ii) the geometry of the finite element model 
which is not personalized. Yet the geometry has a strong impact on the fermoro-
tibial and the femoro-patellar kinematics for at least two reasons: It affects the 
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morphology of the contact surface, and it can determine the position of anatomical 
landmarks from which the boundary conditions are defined (center of the femoral 
head, center of the malleoli).  

Nonetheless, the model appears consistent with in vitro kinematics and the 
computational cost remains reasonable (1h). From a clinical perspective, the de-
veloped knee model constitutes a valuable tool for exploring new treatment strate-
gies, such as the development of ACL substitutes for ligament reconstructions 
where it can be used to test different designs and evaluate the restoration of knee 
kinematics right after implantation. 

5 CONCLUSIONS 

A FE of the knee joint capable of reproducing the kinematic of the knee in flex-
ion/extension for the investigation of the role of ligaments in the joint kinematic 
behavior was created and validated against the experimental data of 23 cadavers. 
Special attention was paid to keep the numerical cost as low as possible. For both 
the tibial and patellar kinematics, the results computed with our model are inside 
the experimental corridor. Both the experimental and computational results ob-
tained for the femoro-tibial and the femoro-patellar kinematics are also compara-
ble to data reported in the literature. From a clinical perspective, the developed 
knee model constitutes a valuable tool for exploring new treatment strategies, such 
as the development of ACL substitutes for ligament reconstructions where it can 
be used to test different designs and evaluate the restoration of knee kinematics 
right after implantation. 
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Abstract. The planning and interventional guidance of liver tumor ra-
diofrequency ablation (RFA) is difficult due to the cooling effect of large
vessels and the large variability of tissue parameters. Subject-specific
modeling of RFA is challenging as it requires the knowledge of model
geometry and hemodynamics as well as the simulation of heat transfer
and cell death mechanisms.
In this paper, we propose to validate such a model from pre-operative
multi-modal images and intra-operative signals (temperature and power)
measured by the ablation device itself. In particular, the RFA com-
putation becomes subject-specific after three levels of personalization:
anatomical, heat transfer and a novel cellular necrosis model. We pro-
pose an end-to-end pre-clinical validation framework that considers the
most comprehensive dataset for model validation. This framework can
also be used for parameter estimation and we evaluate its predictive
power in order to fully assess the possibility to personalize our model in
the future. Such a framework would therefore not require any necrosis
information, thus better suited for clinical applications. We evaluated
our approach on seven ablations from three healthy pigs.
The predictive power of the model was tested: a mean point to mesh error
between predicted and actual ablation extent of 3.5 mm was achieved.

1 Introduction

Subject-specific modeling of liver tumor radiofrequency ablation (RFA) can pro-
vide additional guidance to radiologists during the intervention and improve the
planning of the procedure, which are challenged by inter-subject variability in tis-
sue characteristics, the heterogeneous cooling effect of large neighboring vessels,
porous circulation and blood coagulation. More specifically, such models could
help clinicians in deciding where to place the heating probe and for how long
heating must be applied. Several approaches have been developed to describe
and simulate RFA of liver tumors. They differ in their choice of the biophysical
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phenomena that are considered and the type of experimental data used to design
and validate them. All simulations are based on the bioheat equation considering
a cooling effect that is either diffuse [1] or localized at neighboring vessels [2–5].
Furthermore, the cooling effect due to venous flow in the liver parenchyma is
also considered in [4, 5]. Few authors [2, 4, 5] have proposed to simulate RFA
on realistic subject-specific geometries extracted from images and only [6] has
personalized biophysical parameters on patient data in order to minimize the
discrepancy between simulated and measured necrotic (ablated) regions.

Up to now, the comparison between simulated and measured necrotic regions
has been used by several authors [2, 4–6] as the main criteria of success in pre-
dicting the effect of RFA on abdominal tumors, for either model validation or
personalization. However, the necrosis of tissue is the resultant of several com-
bined physical phenomena, mainly the heat transfer and cell death mechanisms,
meaning that a given ablated region may be explained by several combinations of
parameters. In addition to this identifiability issue, the size of the tumor extent
can only be known reliably from post-operative imaging which makes it difficult
to eventually update the ablation plan during the procedure. A method that
relies also on pre-operative or interventional data for parameter identification is
therefore required for RFA models to be clinically useful.

In this paper, an extended validation strategy of RFA is introduced, based
also on delivered electrical power during ablation and temperature drop during
cooling in addition to the extent of ablated regions. This approach leads to
an increased confidence in the computed temperature map, a clinical surrogate
for tissue damage during intervention. Furthermore, the probe temperature and
delivered power are information that are readily available, in real-time, from the
RF system and therefore could be used to update the therapy plan during the
intervention.

The RFA computational model becomes subject-specific after three levels of
personalization: anatomical, heat transfer and cellular necrosis. The computa-
tional model, implemented using the Lattice-Boltzmann Method (LBM), relies
on anatomies extracted from CT and device-based measurements (Sec. 3).

The proposed approach was successfully tested on seven surrogate hepatic
tumors implanted on three healthy swines. Following the validation, we showed
how this framework can be used for personalization. Parameter estimation was
performed on two tumors to select a subject-specific set of parameters (Sec. 4).
It lead to accurate predictions for both temperature evolution and necrotic re-
gion extension: mean error between measured and simulated temperature of
12.0◦C, mean point-to-mesh error between predicted and actual ablation extent
of 3.5 mm.

2 Pre-clinical Study for Model Validation

2.1 Experimental Setup

Pigs are considered as a relevant animal model as their hepatic system is similar
to the human one. The extensive pre-clinical study includes three swines. Sev-
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RFA probe 
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Geometrical model  
of the RFA probe 

Fig. 1: (Left): Mesh model of the probe with the 9 tips derived from a CT image of the
probe only; (Right): Photo of the probe inside the pig liver.

eral surrogate tumors (diameters < 3cm) were inserted at various locations of
the liver (close to vessels or Glisson capsule) under ultrasound (US) guidance,
followed by the acquisition of pre-operative CT images including portal, venous
and arterial phases. The surrogate tumors were made of a specific gel which
exhibited a hyper-intense signal in CT. An MR-compatible RFA probe (RITA,
AngioDynamics) was deployed at 2cm of diameter under US guidance (Fig.1,
right panel). An MR image was then acquired to get the position of the probe
in the liver. The temperature and delivered power were monitored and recorded
intra-operatively during and after the ablation. Finally, a post-operative CT or
T2 MRI was acquired two days after the ablation to assess the extent of the
necrotic areas. Overall, pre-, intra- and post-operative images were available,
along with interventional device measurements. To the best of our knowledge,
no such validation setup has been reported in the literature.

2.2 Data Preprocessing

From the pre-operative CT data, the following anatomical structures were seg-
mented semi-automatically by experts (Visible Patient, Strasbourg, France) and
meshed (Fig. 2): the parenchyma, all tumors, hepatic veins, vena cava, portal
vein, biliary vesicle and hepatic arteries. From post-operative CT or MR data,
necrotic areas were segmented and meshed as well. Due to ethical reasons, CT
with contrast agent could not be acquired two days after intervention, making
accurate pre- to post-operative registration nearly impossible.

2.3 3D Modelling of the RFA Probe

The geometry of the probe when deployed at 2cm (the diameter of the area
defined by the tips of the probe is 2cm) was acquired from a CT image of the
probe only. A 3D mesh was then reconstructed (Fig.1, left panel) and manually
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Fig. 2: Segmentation of the liver, arterial vessels, portal and hepatic networks, surrogate
tumors and biliary vesicle. (Left): Overlay of the segmented areas on pre-operative CT
image. (Middle): Creation of the 3D model. (Right): Vessels and liver parenchyma.

registered on the pre-operative CT using the main axis of the probe and the intra-
operative MR data. The rigid registration was visually checked by an expert up
to a rotation along its axis since the MR resolution did not allow to distinguish
the nine tips of the probe.

3 Subject-Specific RFA Model

3.1 Heat Transfer Model

The bioheat equation describes how the heat flows from the probe through the
liver while taking into account the cooling effect of the main vessels, as proposed
in the Pennes model [7]. The temperature T is computed by solving the following
reaction-diffusion equation:

ρtct
∂T

∂t
= Q+∇ · (dt∇T ) +R(Tb0 − T ) (1)

where ρt, ct, dt are the density, heat capacity, conductivity of the tissue, Q, the
source term, R, the reaction coefficient and Tb0 the blood temperature (assumed
constant) in large vessels. In this study, the blood flow within the parenchyma
considered as a porous medium is not taken into account as how it affects the
overall cooling has not been clearly quantified in the literature, in particular
when compared to the diffusive effect. Nonetheless our model includes the cool-
ing effect, also called heat sink effect, of all hepathic large vessels (veins and
arteries). Eq. (1) is solved using the Lattice Boltzmann Method (LBM) for fast
computation on general purpose Graphics Processing Units (GPU). LBM has
been developed for CFD and is now a well-established discretization method.
Verification of the implementation has been performed through a comparison
with an analytical solution and it has the advantage over FEM to be easily par-
allelized in GPU [4]. An isotropic Cartesian grid with 7-connectivity topology
and Neumann boundary conditions at the boundaries of the liver is employed. A
Multiple-Relaxation-Time (MRT) model is used for increased stability [8]. For
a time step of Δt = 0.5s, faster than real-time computation can be achieved on
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a standard desktop machine (Windows 7, Intel Xeon, 3.30GHz, 16GB RAM, 12
CPUs, Nvidia Quadro K5000 4.0 GB).

3.2 Cellular Necrosis Model

A three-state model [9] is coupled with the bioheat equation to compute tissue
necrosis. Each cell has a probability to be either undamaged (U), vulnerable (V)
or necrotic (N). Those probabilities vary with the simulated temperature over
time according to the following state equation:

U
β(T )−−−→←−
γ

V
δ(T )−−−→ N (2)

where β(T ) = β̄eT/Tk , δ(T ) = δ̄eT/Tk(1 + 10N) and γ are the transition rates.
Unlike in [10], three distinct transition rates are considered to allow cells to
reach the vulnerable state. (Fig. 3) represents the solution at one vertex over
time if a constant temperature of 105◦C is applied. The cell death model is
strongly coupled to the bioheat equation. More specifically, it depends on the
temperature computed based on the bio-heat model (the transition rates β(T ),
δ(T ) are temperature dependent), whose parameters depend on the state of the
cell (the heat capacity depends on the state of the cell: cUt , c

V
t and cNt correspond

respectively to the heat capacity of undamaged, vulnerable and necrotic tissue).
Eq. (2) gives three coupled ODEs that are solved with a first order explicit

scheme on the same grid and with the same time step as the bioheat equation.
For the heat transfer and cell death models, parameters are initially set to values
from the literature [7], Table 1 reports them. The conductivity dt depends on
the temperature through dt = d̄t ∗ (1 + 0.00161 ∗ (T − 310)) as in [5].

3.3 Parameter Estimation from Probe Measurements

Computation of Heating Power. During the intervention, the delivered
power and the temperature distribution are measured by the ablation probe
itself. We assume that the measured power is actually strongly correlated (pro-
portional) to the heat power P (t) delivered through radio-frequency to heat the
liver tissue. Proportionality is assumed to account for power dissipation due to
electrical resistance, and the unknown surface ratio of the probe being heated.
The heat power P (t) delivered to the tissue can be computed at each time step
of the simulation from the bioheat equation according to Fourier’s law:

P (t) =

∫
S

dt
∂T (t)

∂n
dS (3)

where S is the probe surface and n is the outer normal at that surface. During
our experiments, the measured electrical power appeared to reach its maximum
during the increase in temperature, before reaching the plateau of 105◦C (Fig. 6).
This phenomena cannot be explained by a constant heat capacity which would
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Fig. 3: Cell state evolution over time when tissue is heated at 105◦C.

Table 1: Nominal Value of Model Parameters.

Notation Parameter Name Nominal Value

γ (s−1) recovery rate coefficient 7.7×10−3

β̄ (s−1) damage rate coefficient 3.3×10−3

δ̄ (s−1) vulnerable rate coefficient 3.3×10−3

cVt (J(kg K)−1) heat capacity of vulnerable tissue 3.6 ×103

cNt (J(kg K)−1) heat capacity of necrotic tissue 0.67×103

cUt (J(kg K)−1) heat capacity of undamaged tissue 3.6 ×103

d̄t (W(m K)−1) heat conductivity 0.512

lead to a peak after the plateau is reached. Instead, this observation suggests that
the cells reach their vulnerable state faster. Thus we update our necrosis model
accordingly: after studying the ODEs of the model and a sensitivity analysis
on its parameters, δ̄ has been modified such that tissues reach very fast their
vulnerable state which entails a significant change of heat capacity (Table 3).
Cooling Stage. RFA is simulated by imposing the measured temperature at
the tips of the probe (Dirichlet boundary condition) until the heating stops at
a given time t = ta. In the absence of any delivered heat power, the nine tips of
the probe cool down at a speed which depends on the conductivity dt and the
heat capacity ct. Thus during the cooling period tc − ta (cooling stops at time
t = tc), the simulated temperature Ts can be compared with the measurements
Tm read from five tips of the probe (four tips do not have any thermistors).
Personalization. After a sensitivity analysis, we chose to estimate the heat
capacity cUt and the constant part of the conductivity d̄t as they mainly influence
the delivered power, the temperature distribution and the size of ablated regions.
These two parameters are personalized from probe measurements (temperature
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Fig. 4: Comparison between the simulated and the post-operative necrotic areas on tu-
mor 2-1. (Left): The simulated lesion is showed around the RFA probe in the subject-
specific geometry. (Right): Zoom on the ablation area, the simulated lesion is qualita-
tively close to the registered post-operative lesion.

and power) by minimizing the following cost function:

f =
1

ta

t=ta−1∑
t=0

(Pm(t)− Ps(t))
2

σ2
Pm

+
1

tc − ta

t=ta+tc∑
t=ta

(mTm
(t)−mTs

(t))2

σ2
Tm

(4)

where σPm and σTm are the standard deviations associated with the heat
power and the temperature, both of them evaluated from the variability in the
available observations (equal to 13.3 and 5 in our experiments). To cope with the
uncertainty in the rotation of the probe along its axis, the mean tip temperature
mT is used for the personalization.

Using DAKOTA1, a gradient-free optimization method, the Constrained Op-
timization BY Linear Approximations (COBYLA), is used to minimize the cost
function Eq. (4) as only a few forward simulations (typically 20) are required.
COBYLA is a sequential trust-region algorithm. Initially, the total domain of
parameters is visited (here: dt: 0.51 to 6.14, cUt : 18 to 3618) and then the region
is contracted. The estimation took around 13 hours (25 iterations).

4 Evaluation on Swine Data

4.1 Model Validation

The model was evaluated on seven ablations performed in three swines. The ap-
plied RFA protocol was not exactly the same for all ablations. Five ablations were
performed through several short cooling and heating periods, whereas the other

1 http://dakota.sandia.gov - multilevel framework for sensitivity analysis.
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Fig. 5: Comparison between the simulated and the measured temperature on tumor
3-1. During the heating phase, the temperature is imposed, the power is simulated and
compared to the measured one. During the cooling phase, the simulated (non-imposed)
temperature is compared to the measured one.
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Table 2: Evaluation on Pig Data.

Pig Necrotic
Point-to-mesh error

1 3.71 ± 2.49 mm
2-1 4.06 ± 1.59 mm
2-2 4.02 ± 1.35 mm
2-3 2.46 ± 1.35 mm
3-1 3.80 ± 2.39 mm
3-2 4.85 ± 2.13 mm
3-3 2.13 ± 1.71 mm

two ablations included only one long final cooling stage after a continuous heat-
ing period. For all pigs, nominal value of parameters (reported on Table 1) were
employed. In each case, the simulated lesion was compared with the registered
ground-truth. Due to the uncertainty in the registration of the post-operative
image to the pre-operative image, the necrotic lesion segmented on the post-
operative image is registered rigidly to the pre-operative image by aligning its
barycenter with the barycenter of the simulated necrosis. Fig. 4 shows results
for tumor 2-1, in this case, the model under-estimate the lesion size. Quantita-
tively, point-to-mesh errors [11] computed between the simulated lesion and the
registered post-operative ground-truth showed good prediction of the necrotic
extent (3.5mm of mean point-to-mesh error). Values are reported in Table 2. The
prediction of the necrosis extent was valid up to 5mm which can be considered
as sufficient for clinical applications. Qualitatively, as one can see on Figure 5,
the simulated heat power and temperature were close to the heat power and the
temperature given by the RFA probe itself.

4.2 Towards Model Personalization

As the data came from healthy pigs of similar age and weight, we hypothesized
that the parameters would be the same for all of them. The personalization
based on the probe temperature and power was performed for the two tumors
with final cooling stage as it was long enough to observe reliably the effect of the
conductivity dt, yielding two sets of personalized heat capacity and conductivity
values, reported in Table 3. We validated not only the ability to personalize
the model but also its predictive power by evaluating the simulation results on

Table 3: Parameters values.

Notation Parameter Name Nominal Personalised Values
Value on tumor 1 on tumor 2-3

δ̄ (s−1) vulnerable rate coefficient 3.3×10−3 1×10−4

cUt (J(kg K)−1) heat capacity of undamaged tissue 3.6 ×103 3.6 ×101 3.6 ×101

d̄t (W(m K)−1) heat conductivity 0.512 0.614 0.512
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cooling heating 

Fig. 6: Personalization of the heat capacity and the conductivity using (Left) the de-
livered power curve over ablation (Right) the temperature distribution after ablation
from tumor 1 (here, the red and blue curves are superimposed). The error between the
measurement and the computation is reduced from 22.9 to 7.9W for the power and is
equal to 19.3◦C for the temperature.

five different tumors. Briefly, the minimization of the error between measured
and simulated values of power and temperature was done only on 2 tumors (2
different pigs). In both cases, the values independently found were really close:
the same value of heat capacity was estimated, and the conductivity values were
almost equal to the nominal value, as expected as the pigs were healthy.

The estimated heat capacity and the nominal conductivity were then used to
simulate RFA on the five remaining cases and errors in temperature, heat power
and necrosis size were evaluated. Small errors were obtained in those cases too,
without previously having fit the parameters for those tumors. As detailed in
(Sec. 3.3), the vulnerable rate coefficient was also adjusted to match the raise
in delivered power. These results confirmed the stability of the personalization
framework. As reported in Table 4, the use of personalized parameters instead of
nominal parameters led to good predictions of the necrosis extent, the heat power
and the temperature (mean errors of 14.8W and 12.0◦C respectively). However,
by fitting the temperature and the delivered heat power, the novel approach
could estimate the temperatures around each tumor at any time during the
ablation. This additional information could be used as surrogate to assess the
amount and location of damaged tissue (cells that received excessive heat but
without being necrosed) surrounding the ablated region.

The extent of the necrotic area is mainly controlled by the conductivity dt
and the heat capacity of vulnerable cells cVt (not of undamaged ones cUt ). Since dt
was not changed after optimization, there was no significant difference in terms
of necrotic area after personalization, despite a better match for the measured
power and cooling temperature as illustrated on Fig. 6. It was actually not
surprising that the nominal dt value was optimal since all pigs were healthy, of
similar age and weight. Moreover the point-to-mesh errors were less than 5mm;
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Table 4: Quantitative evaluation of model prediction: on average, mean errors of 14.8W
and 12.0◦C. The mean errors between simulated and measured values are computed
for each ablation. For the five ablations which were performed through several cooling
and heating periods, the different error values for each period are reported.

Pig Power error Temperature error Necrotic
point-to-mesh error

1 (perso) 7.9 W 19.3◦C 3.71 ± 2.49 mm
2-1 16.5 and 19.2W 18.9 and 4.7◦C 4.06 ± 1.59 mm
2-2 14.1, 15.5, 12.7W 11.4, 7.3, 11.4◦C 4.02 ± 1.35 mm

2-3 (perso) 8.9W 0.5◦C 2.46 ± 1.35 mm
3-1 10.3, 31.8, 20.2, 16.8W 19.1, 21.9, 6.8, 3.7◦C 3.80 ± 2.39 mm
3-2 18.4, 16.2, 6.4W 23.4, 13.0, 9.6◦C 4.85 ± 2.13 mm
3-3 8.5 and 14.4W 19.4 and 1.1◦C 2.13 ± 1.71 mm

it suggests that simulations with optimized dt and cUt are realistic in terms of
necrotic area, power and temperature predictions which was the objective. In
clinical settings, due to the large variety of diseases treated by RFA (cirrhosis,
fibrosis, etc), the proposed method should be suitable to get subject-specific
parameters from easily accessible data.

5 Conclusion

In this paper, we proposed a novel approach to validate computational models of
radiofrequency ablation (RFA) based on pre-, intra-, and post-operative images
and device-based measurements, in a close-to-clinical settings. The approach was
successfully evaluated on three swines and seven ablations. We presented a pre-
clinical validation of a detailed model, required prior to any clinical study for
which personalization would occur during the intervention.

In clinical RFA of liver tumors, we cannot assume that the biophysical pa-
rameters are the same for all patients, as assumed in this experiment for the
three pigs, and personalization is therefore required. However, by evaluating the
discrepancy in terms of temperature and delivered power, key biophysical pa-
rameters (the heat capacity and the conductivity of the bioheat model) could be
estimated leading to promising predictions. Here, we just relied on information
localized at the tips of the probe, the cooling temperature and the delivered
power during the intervention (no temperature maps, no post-op images re-
quired) and we showed that the model can be personalized from patient data,
which was not granted. We limited the number of personalized parameters (2).
However by estimating more parameters like cVt , c

N
t , current errors like the lesion

size around tumor 2-1 for example, could be reduced.
This opens new perspectives for updating intra-operatively the RFA model

prediction of each lesion based on those two probe measurements. Because they
are available in real-time during the intervention, this appears as a far better
option than using the necrosis extent which is mostly visible post-operatively.
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Future work will attempt to optimize the computation time to estimate on the fly
key parameters from readily available probe measurements, to include additional
cases and observations quantities (MR thermometry for instance) in order to
further improve the personalization and to reliably estimate the deformation
between pre- and post-operative imaging for a precise validation of the necrosis
extent prediction. Further refinements in the model can be added such as the
advection effect of the porous circulation in the parenchyma [6].
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Abstract: We propose a robust and accurate method for automatic 
landmark identification for torso MR images. The method 
combines cross-correlation and statistical models into a single 
framework. Principal component analysis is used to generate 
statistical models of the relative landmark positions, and the 
template images. Partial least-squares regression is used predict the 
initial landmark positions, and template images for the landmarks 
from the characteristics of the unseen MR images. The landmark 
template images are then cross-correlated with the search regions 
and the statistical model is used to constrain the search for the 
maximum combined correlation. The method was trained and 
tested using MR images from 51 female subjects. The method was 
able to identify the position of the tracheal bifurcation and jugular 
notch landmarks with a mean ± SD error of 6.1 mm ± 5.2 mm, 
with 9.1% of the errors greater than 10 mm. This result was three 
times better than the standard template matching method, which 
gave a mean ± SD error of 18.9 mm ± 21.7 mm, with 33% of the 
errors greater than 10 mm. 

Keywords: Landmark detection, statistical modelling, template 
matching, mesh generation. 

1. Introduction
Tracking breast tumours between different imaging modalities and positions 
within the breast can provide important clinical information. Tracking can 
be aided by using predictive biomechanics models that compute the 
deformation of the breast between different states. Typically, finite element 
methods (FEM) are used to simulate deformations of the breast [1], however 
generating the mesh for the simulation is a manual and laborious process. 
As medical imaging and computational biomechanics becomes more 
common, so will the need for robust automated methods to generate meshes 
in a reasonable amount of time. This study describes a robust automated 
method for identifying landmarks in a magnetic resonance (MR) scan. The 
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position of landmarks can guide image segmentation [2] and the placement 
of nodes for mesh generation. 

Landmarks can be defined as distinct anatomical points in the body or as 
edges that can be used as feature points [3]. Landmark detection in medical 
imaging is focused on three approaches: (a) machine learning algorithms [4, 
5]; (b) image intensity models [6]; and (c) invariant geometric measures 
such as curvatures and extreme points based on their shapes [7]. Hartkens et 
al. [8] investigate 3D differential operators for the detection of point 
landmarks in 3D MR and CT images. Frantz et al. [9] implemented a 
statistical approach for landmark detection that requires the user to set an 
initial region of interest in the vicinity of the landmark. Most of these 
methods are either semi-automatic or cannot accurately detect landmarks on 
the skin surface from torso MR images due to the wide dynamic intensity 
range or variability of torso shapes across patients and populations. 
Furthermore, some of these methods are sensitive to noise and result in large 
errors in identifying the position of landmarks.  

Baluwala et. al. [10] used statistical shape models [11] to improve the 
reliability of template matching techniques for identifying landmarks. This 
study extends this method to three-dimensions and improves the reliability 
by using a partial least-squares regression model (PLSR) to predict the 
positions and the template images of the landmarks. This reduces the search 
region, which reduces computational time; provides better initial conditions 
for the search method; and increases the likelihood of correlation with the 
actual landmark. 

In this paper, we describe the data set used to train the statistical models, the 
training methods, the landmark search methods, and the application and 
analysis of the predictive ability of this method. This proposed method is 
compared with the standard template matching method in order to contrast 
the accuracy and robustness of the proposed method. The tracheal 
bifurcation and jugular notch at the top of the sternum are used as test 
landmarks. 

 

2. Methods 

2.1 Overview of the Data 

The landmark detection process was trained and tested on 51 MR scans 
(Figure 1a) acquired with the subject lying prone (face-down) in a clinical 
MR scanner (Siemens Skyra T1-weighted, pixel size: 0.84 mm - 1.07 mm, 
slice thickness: 0.9 mm - 1.1 mm). The subjects were all females with the 
metrics shown in Table 1. 
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Metric Mean ± SD Range 

Age 40 yo ± 15 yo 19 yo - 69 yo 

Height 1.65 m ± 0.07 m 1.48 m - 1.78 m 

Weight 67 kg ± 10 kg 42 kg - 89 kg 

Table 1: Statistics relating to the subjects used in this study. 

 

The proposed method was tested using two landmarks, the tracheal 
bifurcation and the jugular notch. The landmarks were manually identified 
in each of the 51 MR images. This is the only manual process which is 
required for the training process. 

2.2 Training the Process 

The training process involved the generation of statistical models of the 
relative landmark positions and landmark template images, four partial 
least-square regression (PLSR) models to predict the centre of shape model, 
the relative landmark positions, and the weights for the statistical template 
image for each landmark. The statistical models of the shape models are 
used to predict the initial search region and search for the landmark 
positions in the template matching process. The PLSR models of the 
template image weights are used to predict the template images based on the 
image metrics. These statistical models are described in more detail below. 

For the tracheal bifurcation (TB) and jugular notch (JN) landmark set, the 
relative landmark locations (XS) and the centre of the landmarks (xc) were 
computed by 

 

 

A statistical shape model of the relative landmark positions (XS) was 
generated with three components using principal components analysis 
(PCA). 

Additionally, a 48 pixels cubed (1mm3 voxels) template image (IT) was 
extracted for each landmark where the image was centred on the landmark 
position. The population of template images are used to generate a statistical 
template image with two components using PCA. The template image for 
each landmark was then projected back into the PCA model to predict the 
component weights (wTB, wJN).  

Finally, the image metrics (MI), which included the histogram of the pixel 
intensities and the mean and variance of the pixel intensities for each axial, 
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coronal and sagittal slice, was computed for each MR image. These image 
metrics are used as inputs for the PLSR models. The justification for using 
the histogram is that it is expected to be related to the contrast and 
brightness in the scan, the size of the subject and the composition of 
different tissues, e.g., fat and muscle. The slice metrics (mean and variance 
of each slice) are expected to be related to the position of the body in the 
scan. 

Using the image metrics as inputs and the shape model centres, relative 
landmark positions and the landmark template image weights, four PLSR 
models were generated: 

1.  

2.  

3.  

4.  

2.3 Identification of Unseen Landmarks 

Given a new MRI scan (the “unseen” image), there are three steps to 
identify the locations of the tracheal bifurcation and jugular notch: 1. make 
initial predictions of the shape model centre, relative landmark positions and 
template image for each landmark; 2. cross-correlate the template image 
with the search region; and 3. search of the correlation fields for the 
maximum combined correlation where the sampled locations are 
constrained by the statistical shape model. Each step is described in more 
detail below. 

Initial Predictions 

First, the image metrics (MI) of the unseen MR image were computed and 
fed into the PLSR models described in Section 2.2 to predict the shape 
model centre (xc), the relative landmark positions (XS), and weights (wTB, 
wJN) for the statistical template models of the tracheal bifurcation and 
jugular notch. 

The predicted landmark positions (XL) in the MR scan were then given by 

 

The landmark template images ( ) for the tracheal bifurcation and jugular 
notch were reconstructed from the associated statistical template images 
using the weights (wTB, wJN) predicted above. 

Cross-Correlation 

Cross-correlation was performed using the template matching methods 
described in OpenCV library [12] but extended to three-dimensions. The 
cross-correlation method was used with normalisation and the mean of the 
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image subtracted. The search region was centred on each of the predicted 
landmark positions (XL) where the region was 160x160x160mm (1mm3 
voxels). The predicted landmark template images were cross-correlated with 
their respective search regions to obtain correlation fields of each landmark 
(see Figure 1). 

 
Figure 1: Sagittal MR image of the female torso. Respectively, the red, blue and 
green spheres indicate the initial prediction, final prediction and actual positions of 
the tracheal bifurcation (right) and jugular notch (left). Superimposed are the 
overlapping correlation fields from cross-correlating the predicted landmark 
template images with the search regions. The correlation fields are normalised 
between 0 and 1. 

Statistical Shape Model Search 

The final predictions of the landmark positions were obtained by performing 
a search where the objective function was to maximise the product of the 
correlation values samples at the positions reconstructed from the statistical 
shape model and where the degrees-of-freedom were the shape model centre 
(xc) and statistical shape model weights (ws). 

Prior to the search, a better prediction of the centre of the shape model (xc) 
was be obtained by multiplying the correlation fields and searching for the 
position of the maximum correlation product (see Figure 2). The initial 
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statistical shape model weights (wS) were predicted by projecting the 
predicted relative landmark positions (XS) into the statistical shape model. 
The “fmin_l_bfgs_b” function in the scipy.optimize module [13] was used 
to minimise the negative of the product of the correlation values sampled at 
the landmark positions. The minimisation function is a multivariate bound 
constrained method that uses the L-BFGS-B algorithm [14]. This function is 
used in order to constrain the weights of the shape model to within ±3 
standard deviations. 

 
Figure 2: The product of the normalised correlation fields for the tracheal bifurcation 
and jugular notch landmarks (shown in Figure 1). The red spheres are the initial 
landmark positions predicted using PLSR. These are adjusted to the magenta spheres 
based on the maximum of the combined correlation fields. The green spheres are the 
actual landmark positions identified in the image. 

2.4 Testing the Algorithm 

The predictive ability of the proposed method was tested using a leave-one-
out approach. Each subject in turn was selected as the unseen subject, and 
the remaining subjects were used to train algorithm. This trained algorithm 
was then used to predict the positions of the landmarks in the unseen MR 
image. The error for each landmark prediction was calculated as the 
Euclidean distance between predicted and manually identified landmark 
positions. The leave-one-out approach was applied in turn to each of the 51 
MRI scans. The histogram of the errors, and the percentage of errors over 10 
mm for the leave-one-out cases provided an indication of the predictive 
ability (accuracy and robustness) of the landmark identification algorithm. 
The 10 mm failure rate threshold was chosen near the tail of the distribution 
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of errors (see Figures 3 and 4) in order to categorise the cases that failed to 
find the landmark. This threshold was simply used to indicate the robustness 
of the method, rather than the accuracy of the method. 

The proposed method was compared to the template matching method for 
each individual landmark where the position of the landmark was taken as 
the position of the maximum correlation. 

  

3. Results and Discussion 

3.1 Identifying the Landmark Positions 

Two landmark search methods were compared: 

1. Individual Landmark Search, which uses template matching of 
individual landmarks where the landmark positions are identified by the 
locations of maximum correlation from the template matching. 

2. Combined Landmark Search, which uses template matching and 
statistical models where the landmark positions are identified by the 
locations of maximum combined correlation from the template matching 
using the fitted statistical model. 

For each method, the template landmark image and initial landmark 
positions were taken as the average from the population in the first case, and 
are predicted using PLSR in the second case. Each search took between 15 
and 20 seconds on an Intel Core i7-2620M 2.7GHz CPU. 

The results are summarised in Table 2, which shows the mean error and 
percentage of errors above 10 mm for each search method with and without 
predicted initial landmark positions and template image. The worst result 
was given by the template matching method for individual landmark using 
the average landmark locations and mean template image. The best result 
was given by the combined landmark search method with predicted initial 
landmark positions and predicted template image. The improvements in the 
error and the percentage over 10 mm were over three-fold. 

 

Error (mm) Average Predicted using PLSR 

Individual 18.9 ± 24.7 33% > 10 mm 13.9 ± 19.1 28% > 10 mm 

Combined 10.2 ± 11.7 31% > 10 mm 6.2 ± 5.2 9% > 10 mm 

Table 2: The error and failure rate (error > 10 mm) using average and predicted 
initial conditions and template image for individual and combined landmark search 
methods. 
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Figures 3 and 4 provide a better indication of the distribution of the errors 
and failures for the average and predicted initial conditions, respectively. 
The histograms show progressive improvements given by each method, and 
with or without predicted landmark positions and template images.  

 
Figure 3: The distribution of errors for the prediction of the tracheal bifurcation and 
jugular notch when using the individual (top) and combined (bottom) landmark 
search methods. The template landmark images and initial positions and shape 
model was based on the average across the population (n=51). 

We investigated the influence predicting the initial landmark positions and 
template landmark image had on the accuracy and robustness of the 
combined search method. Predicting template image but not the initial 
landmark positions gave an predicted landmark error of 8.5 mm ± 10.0 mm 
where 21.6 % of the errors were greater than 10 mm. Predicting the initial 
landmark positions but not the template image gave a predicted landmark 
error of 7.7 mm ± 8.5 mm where 20.6 % of the errors were greater than 10 
mm. Individually, the use of predictions gave similar improvements in 
accuracy and robustness, however predicting both the initial landmark 
positions and template landmark image gave a significantly better 
cumulative result. 
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3.2 Future Work 

The results from this study are promising, but the proposed method involves 
many variables that can be tuned to improve the accuracy and robustness of 
the predictions. These factors include the number and choice of landmarks, 
the resolution, voxel size and processing (gradient and smoothing) of 
template images, the types of metrics used in the PLSR models, the number 
of modes used in the statistical shape models, and the type metric used in 
the template matching (cross-correlation, Mahalanobis distance, squared-
errors, or a combination). Given the improvement seen related to predicting 
the initial landmark positions and template images, it would be worth 
investigating other metrics for the PLSR model, such as Haar features [15], 
and other prediction techniques. 

Given that the proposed method provides robust and accurate identification 
of the tracheal bifurcation and jugular notch, these landmarks can be used to 
perform a subsequent search for additional landmarks. This work is in 
progress and is providing robust and accurate identification of the sternal 
angle, intervertebral joints, the location of the armpit, the centre line of the 
ribs, and the skin surface (see Figure 5). The intention is to use these 
landmarks to generate subject-specific finite element meshes for 
biomechanical simulations. 

Figure 4: The distribution of errors in the prediction of the tracheal bifurcation and 
jugular notch when using the individual (top) and combined (bottom) landmark 
search methods. The template landmark images and initial positions and shape model 
was based on the average across the population. 
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Figure 5: Work in progress to extend this method to identify other landmarks (sternal 
angle and intervertebral joints), the centre lines of the ribs and the skin surface with a 
fitted mesh. 

The proposed method was developed and tested on 51 images with well 
controlled imaging parameters, but it was less robust with MR images that 
exhibited significant imaging artifacts. However, with future development 
we are optimistic that the robustness of this method can be improved to cope 
with the imaging artifacts and variations, and possibly, various imaging 
modalities.  

4. Conclusions
The presented landmark identification method that combines template 
matching and statistical models, and uses PLSR to predict the initial 
landmark positions and template landmark images, was able to predict the 
landmark positions with an error of 6.2 mm ± 5.2 mm with 9.1 % of the 
errors over 10 mm. This is a significant improvement over template 
matching alone, which gave a prediction error of 18.9 mm ± 24.7 mm with 
33 % of the predictions over 10 mm. It was found that predicting both the 
initial landmark positions and template landmark images significantly 
improved the robustness of the method. Work in progress to extend this 
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method to other landmarks including the spine, ribs and skin surface has 
given promising initial results. It is expected with further development and 
the use of other feature detection and learning techniques, the accuracy and 
robustness of this method can be improved. 
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Forward problem of time-resolved diffuse 
optical tomography considering biological tissue 

deformation 
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Abstract Regularities of photon density normalized maximum (PDNM) move-
ment in deformed and undeformed media with tissue like biological and mechani-
cal properties are described. It has been demonstrated that in all homogeneous 
cases photon density normalized maximum moves to the geometric center of the 
object, regardless of the presence or absence of deformation of the investigated 
object. In presence of a single absorbing inhomogeneity PDNM moves toward the 
point symmetric to its geometric center. In presence of a single scattering inhomo-
geneity PDNM moves toward the center of it. Diffuse transmittance intensity de-
cay in undeformed objects is 8 to 10% faster than in those with deformations. 

Introduction 

Near infrared optical irradiation which is usually used in Diffuse Optical To-
mography is diffusely transmitted through a biological tissue carries useful infor-
mation about the shape, size, location and optical properties of the tissue internal 
structure, i.e. gives possibility to map tissue optical properties [1,2]. However, to 
use this information it is necessary to solve forward and inverse problems of irra-
diation propagation in such media. 

Because of complex distribution of scattering and absorption properties, that 
have different shape, size, location, etc., in general case the inverse problem 
doesn’t have the exact solution [1-4]. Therefore, it is necessary to study the regu-
larities of light propagation through simulated objects, that describe the simplified 
standard cases that correspond to location of tumors, hematomas, hygromas and 
other inhomogeneities. On this basis, we have developed and optimize approxi-
mate radiative transfer models, according to which, absorption or scattering are 
the key factors of light attenuation which is passing through a biological tissue. 

The importance of such regularities and approximate radiative transfer models 
is that they allow to understand better the impact of various factors on propagation 
and attenuation of optical radiation in biological tissues. It is known, that the ex-
ternal shape of the tissue can significantly affect the quality of image reconstruc-
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tion in diffuse optical tomography (DOT) [4]. Therefore, it is necessary to provide 
a good, tight contact of optical fibers to inject and detect diffusely transmitted 
photons in the investigated area. It can significantly reduce the loss of the useful 
signal, and thus to improve the accuracy of absorption and scattering properties 
mapping. However, in some cases, this also leads to a change of the shape (de-
formation) of the tissue. In this regard, compression plates are usually appears as 
the cause of the deformation [5]. In our case it is an elastic bracelet to fixture the 
irradiation source and detector fibers. Application of these plates or the bracelet 
leads to the image artifacts, caused by the discrepancy between the actual bounda-
ries of investigated area and its mathematical model representation [6-8]. Because 
of susceptible to deformation, these artifacts can cause a significant problem in the 
study of a soft tissue such as breast [9,10]. 

Considering spatial distribution of scattering and absorption coefficients, au-
thors of paper [6] describe influence of the female breast deformation to the re-
sults of DOT inverse problem solution. To reduce number of artifacts in the recon-
structed image, in the iterative process of forward problem solution it is suggested 
to consider change of the object’s shape [6]. For this purpose, the shape of the 
breast is determined using 3D camera. Then, using computer simulation, defor-
mations due to the pressure of the source and detector fibers are predicted. Math-
ematical model for the simulation is based on the basic equation of the theory of 
elasticity. 

Interesting approach of mammography-based elastography is suggested in the 
paper [8] for breast tumors diagnostics. The key feature of the method is the fe-
male breast elastogram simulation on the basis of the traditional X-ray mammog-
raphy or DOT. The special attention in this method is paid to the criterions which 
help to distinguish malignant tumors from the healthy tissue by their elastic prop-
erties [8]. 

Paper [11] describes computer methods to make simulation of elastic properties 
of the breast tissue for the purpose of surgical biopsy. Suggested model allows to 
determine tumor position in the deformed object using MRT data for the unde-
formed object. This approach is based on the small deformation theory, consider-
ing that big area deformations are to be divided to the small ones. 

The purpose of this work is to analyze influence of biological tissue defor-
mations on the optical properties, propagation and attenuation, of infrared irradia-
tion in it. 

The model of diffuse migration of photons 

To describe the diffusion of photons in biological tissues we used the Model of 
a Drop – the calculation and visualization of photon density normalized maximum 
(PDNM) motion in a slice of a biomedical object. After being injected, a single ul-
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tra short pulse of irradiation with predetermined number of photons diffusely 
moves inside an object like a drop of ink in the water [12-14]. 

This model allows to describe the experimental data for homogeneous and in-
homogeneous cases, and to visualize PDNM. It is based on the numerical solution 
of radiative transfer equation (RTE) in the diffusion approximation for a light 
pulse with a fixed number of photons. 

The diffusion approximation for RTE describes the balance of energy in a me-
dium containing scattering particles [4] and expressed in partial differential equa-
tions of parabolic type: 
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0сс  – speed of light in the medium; 0с  – speed of light in vacuum; 

object  – the relative refractive index of the simulated object ( ) and its bounda-
ries ( ); zyx ,,  – coordinates of all points of the final simulated area, consisting 
of an inner part of the simulated object , its boundaries , radiation source 
( q ), detectors, and the medium, that is surrounding the object; 

1),,(),,(1),,(3),,( zyxzyxgzyxzyxD sa  and ),,( zyxa  – diffusion 
and absorption coefficients, respectively; ),,( zyxs  – the scattering coefficien; 
point of interest is determined by the coordinates – zyx ,, ; g  – anisotropy factor 
(the average cosine of the scattering angle); ),,,( tzyx  – the photon density at the 
point with coordinates zyx ,,  at a time t ; ),,,( tzyxS  – photon source function. 

Robin boundary condition is used for a description of the photon flux at the 
boundary  of the simulated object [16-18]: 
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where medium  – the relative refractive index of the medium surrounding the ob-

ject (for the air )medium 1 . 
After completion of the simulation iterative process PDNM function, 
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where P  – is the experimentally determined minimum of photon density level 
10 P  [19]. 

Biomechanical properties modeling of soft biological tissues 

In terms of biomechanics, soft biological tissues are nonlinear elastic media. 
Nevertheless, in some cases, for example when the deforming forces cause small 
bending ( %5 ), the soft tissues can still be considered as a media with linear 
properties [6-8]. For example in DOT, the breast tissue should be presented as a 
linear isotropic pseudo-incompressible medium. 

In this case, the basic equation of the elasticity theory for quasi-static defor-
mation on the internal nodes of the simulated area is given by [6,8]: 

                                            ,0)()( 2uu                                          (3) 

and the same equation for nodes on the boundary  of the studied area is repre-
sented as follows [6]: 

 ,))()(( 2 hnuu  (4)          

where n  – a unit vector directed outwards from ; h  – represents the tension on 
the surface and boundary of the simulated area; ),,( 321 uuuu  – the displacement 
vector components at the axes zyx ,,  in the Cartesian coordinate system;  and 
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 – Lame’s elastic constants. These constants for isotropic medium (first and 
second Lame’s elastic constants) are associated with the Young's modulus E  and 
Poisson ratio, , as follows [8-10]:  

)1(2
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and 
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Thus, the simulated object is considered to be free of any initial deformations 
and an influence of the internal deforming forces (such as muscle activity). All de-
formations are considered to be caused by external loads, such as source and de-
tection fibers and their fixtures. 

Note that, scattering and absorption coefficients of the tissue under the defor-
mation should change but insignificantly [6, 8]. The suggested model does not 
consider these changes. 

To describe the mathematical model it is necessary to give consideration to the 
experimental set up for time-resolved DOT (Fig. 1.) as well as bracelet technicali-
ties which could cause female breast deformations in the points of source and de-
tector fibers attachment: 

1. By the signal of Processing and visualization unit (1) 3D camera (2) reads 
and determine surface of the investigated object; 

2. Weak reflecting and partially elastic bracelet is attached to the investigat-
ed object (3-4); 

3. Broadband light source (5) and Streak camera (6) are activated by the 
signal from Processing and visualization unit (1); 

4. Broadband light source (5) generates a light pulse which goes to the In-
jection port (8) through the fibers. Part of the optical irradiation goes to the Opti-
cal oscilloscope (9) and Optical synchronization unit (10); 

5. Diffusely transmitted through the object irradiation goes to the Detecting 
ports (11) then goes to the Detectors fibers (12) and to the detecting array of the 
Streak camera (6). The latter registers the full set of time-resolved data – Time 
Point Spread Functions (TPSF); 

6. All TPSF from the Streak camera (6) and data from Optical oscilloscope 
(9) go to Processing and visualization unit (1); 

7. Processing and visualization unit (1) using the designed software makes 
calculations, process data, solve the inverse problem and map absorption and scat-
tering properties distribution hidden inside the object. 

The important feature of the experimental set up is that the fibers are located on 
slightly reflective elastic band with adjustable diameter consisting of two identical 
halves. It allows fixing painlessly the source and detection fibers on the investi-
gated biomedical object. 

Only one fiber is used for the injection of photons, detection fibers surround the 
investigated object, and are located at the equal angles to each other to the right 
and left from the source fiber. 
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In this case, the investigated object will be subject to deformations in a plane of 
the fibers only. Cross-section made at this height will appear as an ellipse rather 
than a circle. In the simulation of elastic properties of biological tissue it will be 
assumed that Poisson ratio 495.0 , Young's modulus 20E  kPa.  

 
Fig. 1. Block diagram of the experimental set up for time-resolved Diffuse Optical Tomography. 

Results and Discussion 

Our study has the purpose to analyze the influence of tissue deformation on the 
optical irradiation propagation and attenuation. Therefore, to minimize 3D numer-
ical simulation interpolation distortions, the FDM grid should be uniform; e.i. dis-
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tance between the nodes should be the same in all three directions. To realize this 
the numerical solution of the equations (1) - (4) was performed using Finite Dif-
ference Method, using the implicit difference scheme built on seven-point grid 
pattern [14].  
The results of the simulations in a homogeneous and inhomogeneous non-
deformed conical object are shown in Fig. 2. Distribution of optical properties of 
the slice of the object is shown in Fig. 3. It is taken at the half height of the object 
and in the plane of the fibers. 

 
Fig. 2. The distribution of photons in homogeneous (a) and inhomogeneous (b) conical ob-
jects in 0.75 ns after the light pulse injection. Dimensions of the pictures are 136 mm × 136 
mm × 136 mm. 

 
Fig. 3. Optical properties distribution in the plane taken at the half height of heterogeneous 
conical object. Inhomogeneity is considered to be spherical. 

Several series of computer simulations have been performed to determine in-
fluence of deformation to the character of PDNM movement. Photon density dis-
tribution was consequently simulated ( P =0.995-0.999) for the time-resolved cas-
es using the pulsed irradiation in homogeneous and inhomogeneous, deformed and 
undeformed conical objects with optical properties of breast tissue. 
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It has been found that, in all homogeneous cases PDNM moves to the geomet-
ric center of the conical object, regardless of the presence or absence of defor-
mations, and also the values ),,( zyxa  and ),,( zyxs  [19]. 

The simulation results of the photon distribution in the plane (made at the level 
of the source and detector fibers) of homogeneous undeformed object at different 
moments of time t are shown in Fig. 4. 

 
Fig. 4. Photon density distributions in the slice of the homogeneous conical object at the 
following times after the injection of the pulse: 0.7 ns (a), 2.1 ns (b), 3.5 ns (c), 4.9 ns (d). 
Purple sport represents Photon Density Normalized Maximum in all cases. Dimensions of 
the pictures are 102 mm × 102 mm. 
 

Absorption, ),,( zyxa , and reduced scattering, ),,(' zyxs , coefficients for 
r  are equal to 0.004 mm-1 and 0.5 mm-1, respectively. Similar results for the 

optically homogeneous deformed object are shown in Fig. 5. 
In the case when object has an absorbing inhomogeneity, the character of 

PDNM movement considerably varies in comparison with the homogeneous cas-
es. Fig. 6 shows photon density distributions in the plane at the half height of the 
inhomogeneous undeformed conical object at different time points. The size of the 
object is the same as in the homogeneous case [19]. 
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Fig. 5. Photon density distributions in the slice of the deformed conical homogeneous object 
at the following times after the injection of the pulse: 0.7ns (a), 2.1ns (b), 3.5ns (c), 4.9 ns 
(d). PDNM moves to the center. Dimensions of the pictures are 51 mm × 102 mm. 

Absorbing inhomogeneity with -1mm 0.01),,( zyxa  is located at the angle 
of 135° with respect to the axis of the incident irradiation, at the depth of 0.25 of 
the plane radius, R. It represents a sphere with the diameter of 0.4 of the radius. 

Fig. 6 shows, that in the case of absorbing inhomogeneity, PDNM moves to-
ward the point, which is symmetrical to geometrical center of the heterogeneity 
relative to the center of the investigated object. 
As a result of additional simulations, it was found, that the speed of PDNM 
movement increases with the increasing of the inhomogeneity absorption coeffi-
cient and its size [20]. 
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Fig. 6. Photon density distributions in the slice of the inhomogeneous conical object at the 
following times after the injection of the pulse: 0.7ns (a), 2.1ns (b), 3.5ns (c), 4.9 ns (d). 
Dimensions of the pictures are 102 mm × 102 mm. 

Similar results were obtained for the deformed object, see Fig. 7. The figure 
shows that PDNM moves similarly, i.e. deformation of the object and the imbed-
ded inhomogeneity, has no significant influence on the photon density and its 
normalized maximum. 

However, rate of the radiation intensity decay in the cases with undeformed ob-
jects is slightly higher (8-10%) than that in the cases with deformations. That 
means the deformations influence significantly on the overall distribution of the 
photon density except for the location of its maximum. Therefore they should be 
taken into account when solving the Diffuse Optical Tomography inverse problem 
[6-8]. 
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Fig. 7. Photon density distributions in the slice of the deformed conical inhomogeneous ob-
ject at the following times after the injection of the pulse: 0.7ns (a), 2.1ns (b), 3.5ns (c), 4.9 
(d). Dimensions of the pictures are 51 mm × 102 mm. 

Conclusion 

The described model and computer simulations were able to identify the following 
regularities of PDNM movement in a conical object: 

1. In all homogeneous cases PDNM moves to the geometric center of the 
object, regardless of the presence or absence of deformations, and values of the 
absorption and scattering. 

2. In presence of an absorbing inhomogeneity, PDNM moves toward the 
point that is symmetric to its geometric center, relative to the center of conical ob-
ject regardless of the presence or absence of deformation. 

3. Diffuse transmittance intensity decay in the cases with the undeformed 
object is slightly higher than in those with deformations. The difference is about 8-
10% for the cases described in here. 
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The described properties allow assessing influence of deformation along with 
optical properties of the object on the photon density distribution and attenuation. 
They will be useful in developing more effective methods for solving DOT in-
verse problem. 
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Abstract    Computational cell mechanics models are dependent on 
cell morphology. Most studies of cell mechanics use an idealized 
geometry or a cell-specific approach. These approaches do not con-
sider the effect of morphological variation in cell populations. In this 
chapter we analyze shape variation within a population of endotheli-
al cells, and the effect this variation has on stress estimates from fi-
nite-element modeling. We developed shape descriptors to quantify 
variation in the nucleus, and overall cell shape in a population of 
human-microvascular endothelial cells (n = 15). From these de-
scriptors, we generate statistically representative spatial models that 
more accurately reflect the cell shape of the entire population. We 
also generate models with non-typical morphology that are less like-
ly to be found in the cell population. Both of these model types were 
subject to finite-element analysis, and compared to illustrate how 
morphological variation effects stress estimates. 

Keywords Finite-element modeling · Endothelial mechanotransduc-
tion · Cell morphology, Generative models · Endothelial cells · Spa-
tial statistics 

1 Introduction 

Endothelial cells (ECs) detect and respond to blood flow induced 
forces in a process known as mechanotransduction. Dysfunctional 
mechanotransduction has been implicated as one of the causes of 
cardiovascular diseases such as atherosclerosis [1]. Hence, studying 
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mechanotransduction processes is motivated by the possibility of 
improving the diagnosis and prevention of cardiovascular diseases. 
Davies et al. proposed a decentralized model in which mecha-
notransduction occurs as the sum of two processes. First, mecha-
notransmission, whereby forces from blood flow are transmitted in-
ternally into the cell via the cytoskeleton. Second transduction, 
where force-sensitive transducers located throughout the cell are ac-
tivated, causing a biological response such as release of vasodilators 
[2]. Hence there is no central transducer responsible for overall 
mechanotransduction: cell signaling is the aggregate output of all 
transducers within the cell. 

Both mechanotransmission within and mechanical behavior of 
endothelial cells have been examined using computational modeling 
[3-6]. The spatial domain of these studies is typically based either on 
images of a single cell [5], or on idealized geometry [3-4, 6], where 
the cell is represented by simple shapes and solids (for instance, the 
nucleus as a spheroid). These approaches do not consider the effect 
of cell shape variation on their predicted outputs. As such, it is un-
certain whether the findings of cell-specific studies can be applied to 
the overall cell population.  

There is reason to suggest they cannot be: Ferko et al. demon-
strated that the spatial distribution of focal adhesions causes hetero-
genous stress/strain distributions. They also found that stresses con-
centrated at the interface of the nucleus and cytoplasm [5]. This 
suggests that varying focal adhesion and nuclei morphology would 
have resulted in substantially different stress/strain estimates. Caile 
et al. found that rounded cells had an elastic response to compres-
sion, whereas spread cells of identical elastic moduli, exhibited hys-
teresis [3]. Taken together, this suggests that individual endothelial 
morphology is an important determinant of cell mechanical behav-
ior. Thus it is important to consider spatial variation in the popula-
tion of cells when performing single cell mechanical simulations. 

In this study we aimed to quantify the morphological variation in 
an EC population. We also aimed to determine if this variation leads 
to substantially different estimates of mechanical behavior. The 
starting point for our methods to quantify spatial variation was based 
on a range of studies carried out by Murphy et al. [7-9]. They pro-
posed a generative model approach, whereby a population of cells 
are imaged and used to build up a dataset of spatial descriptors. 
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From these descriptors, new virtual cells can be generated that dis-
play characteristic patterns learned from the cell images. 

2 Materials and Methods 

We imaged a population of endothelial cells cultured under identical 
conditions (n = 15). The nucleus, f-actin and acetylated α-tubulin 
components of the cytoskeleton were imaged. Shape descriptors 
were formulated to numerically describe the morphology of the nu-
cleus and cell edge. The statistical variation in each descriptor was 
analyzed and used to create generative cells: virtual cells with a 
morphology sampled from the shape descriptor distribution of the 
entire population of endothelial cells. These generative cells were 
then used as the spatial domain for our finite-element analysis to 
generate stress estimates. Physiological levels of flow-induced shear 
stress formed the boundary conditions of our simulation. 

2.1 Cell culture and Imaging  

Unless otherwise stated all materials were obtained from Life 
Technologies (Carlsbad, CA, USA). Human microvascular 
endothelial cells (HMEC-1s) were kindly provided by Dr. Edwin 
Ades, Mr. Francisco J. Candal (CDC, Atlanta GA, USA) and Dr. 
Thomas Lawley (Emory University, Atlanta, GA, USA) [10]. 
HMEC-1s between passages 5-7 were seeded (1x105 cells/ml 
concentration) onto fibronectin-coated 6-well plates (fibronectin, 20 
μg/ml, #33016-015). They were grown to confluence at 37oC in 5% 
CO2. Cells were maintained daily in MCDB131 (#10372019) media 
with 10% L-glutamine (#25030081), 2% FBS (#10091148) and 1% 
penicillin/streptomycin (#15140122).  

Immunofluorescent labelling Due to overlapping wavelengths of 
absorption and emission only three distinct subcellular components 
could be imaged simultaneously. Thus we stained and imaged the 
nucleus, acetylated α-tubulin and f-actin. The protocol is as follows: 

Upon confluence cells were fixed with 4% paraformaldehyde 
(#158127-100, Sigma Aldrich, St Louis, MO, USA) for 30 minutes 
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at 37oC, then washed with PBS (3 x 5 min, #00-3000). Next, cells 
were permeabilized in triton X-100 (0.5%, 5 min, #T9284, Sigma-
Aldrich), followed by PBS wash (3 x 5 min). To image the nucleus, 
cells were stained with Hoechst 33258 (1:1000, #B2883, Sigma-
Aldrich) for 5 minutes at room temperature and washed with PBS (3 
x 5 min). To image acetylated α-tubulin, cells were blocked with 
goat serum (1:20, #G9023 Sigma-Aldrich) for 30 minutes at room 
temperature. They were then incubated overnight with 611b (1:500, 
#T7451 Sigma-Aldrich). This was followed by a 2 hour incubation 
with secondary antibody goat anti mouse Alexa Fluor 594 (1:500, 
#A11005), and a PBS wash (3 x 5 min). To image f-actin, cells were 
incubated with Alexa Fluor Phalloidin 488 (1:500, #A12379) for 30 
minutes at room temperature, followed by PBS washes (3 x 10 min). 
Next, coverslips were mounted directly onto 6 well plates using 
ProLong Gold (#P36934). The bottom of each well (with coverslip 
attached) was then removed with a heated scalpel to allow direct im-
aging. 

Microscopy An Olympus FV1000 laser scanning confocal micro-
scope with a 60x/1.35 NA oil immersion lens was used to image the 
cells. Diode-pumped 405nm (to image the nuclei nucleus), helium 
neon 543nm (acetylated α-tubulin) and an argon ion multiline 
458nm (primary cilium and f-actin) lasers were used to sequentially 
excite samples. Acquired image resolution acquired was 1600x1600 
pixels, with an XY spatial resolution 0.132 μm/pixel.  

2.2 Generating virtual cell components 

Image processing and image analysis of the nucleus and cell edge 
were carried out in MATLAB (version R2013b), ImageJ (version 
1.48o) and AMIRA (version 5.6). Nuclei morphology was quantified 
first, as the nucleus is an easily identified feature present in every 
cell. Thus the nucleus functions as a useful reference point for shape 
descriptors of the other sub-cellular components. 

Quantifying spatial variation of nuclei To quantify nuclei 
morphology we used a modified version of the method described by 
Buck et al. [9]. This method involved 4 spatial descriptors: median 
axis, nucleus width, nucleus length and centroid vector (see Fig. 1). 
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Both median axis and nuclei curves were normalized by the length 
of the central axis, and fitted with a 10th order polynomial. Finally in 
every 2D slice, we defined the centroid vector: the vector between 
the centroid of the slice, and the centroid of the whole nucleus. 
Hence any nucleus can be described by the 1 x n vector of central 
axis lengths were n is number of slices, two 11 x n vectors (fitted 
coefficients of a 10th order polynomial to describe the median axis 
and nuclei width) and the 3 x n array of centroid vectors. A 
distribution for each shape descriptor was gathered from a 
population of cells (n = 15). By sampling from this distribution, it is 
possible to generate a nuclei representative of the entire population. 

 
Fig. 1 Quantifying nuclei morphology using spatial descriptors. a: 

triple-labeled co-image of a human microvascular endothelial cell, 
with the nucleus in blue, f-actin in green and acetylated α-tubulin in 
red. b: thresholded image of cell shown in (a) with the central axis 
in blue and the nucleus centroid in green. The central axis length is 
the nucleus length. c: cells were rotated so that the central axis runs 
top-to-bottom. d: cells were rotated a 180o if needed, to ensure ma-
jority of cell area was on the right-hand side of the central axis. All 
slices in stack were rotated by same angle as the central slice. e: the 
median axis was found, as the point along the row (shared y coordi-
nate) that is equally distant from either edge of the nucleus. f: this 
distance is known as the nucleus width. g: median axis position in 
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pixels, normalized by dividing by nuclear length.  h: nuclear width 
in pixels normalized by dividing by nuclear length. 

 
Quantifying spatial variation of cell edge The cell membrane was 

not explicitly imaged in this study. Instead the edge of the cell was 
approximated as being one pixel (132 nm) beyond the edge of the f-
actin and acetylated α-tubulin features. This was achieved by adding 
these channels together and Gaussian blurring the resulting image. 
The shape descriptors of the cell membrane were adapted from Buck 
et al. [9]. First, the nuclear centroid of the central slice within the 
cell was defined as the origin of the cell. Every cell image stack was 
rotated so that the nucleus central axis ran top-to-bottom and majori-
ty of cell area was on the right hand side of the central axis (Fig 1. b-
d). The centroid of each slice was also determined, and the x and y 
displacement between the slice centroid and the origin was recorded.  
In each slice the cell boundary was detected by finding the boundary 
at 240 equally-spaced points, radiating outwards 1.5 degrees apart 
from the slice centroid (see Fig 4). Instead of storing these points as 
x, y, z coordinates, they were converted to a polar coordinate system, 
hence only 240 radial lengths were needed (as the angle is known). 

 Hence the cell membrane spatial description could be stored as a 
241 x n cell edge vector, where n is the number of slices, and there 
are 240 radial lengths, and a single z coordinate that all the points in 
each slice share. Prior to calculating radial length, each x and y co-
ordinate in the cell edge vector was normalized by the displacement 
of the slice centroid relative to the origin (Fig 3). 

To analyze the variation in these cell edge vectors, we used prin-
ciple component analysis. Firstly the 241 x n cell edge vectors were 
converted back into Cartesian coordinates resulting in a vector of 1 x 
720n, where by each slice, n, has 240 x, y and z coordinates. A ma-
trix was formed from the edge vectors of all cells, 15 x 720n. Each 
column was centered by subtracting the mean cell edge vector. PCA 
was then performed using singular value decomposition algorithm. 
The PCA method finds shape modes that can be linearly combined 
to recreate any cell shape from the original data. 

Hence cell membrane shapes can be generated by randomly gen-
erating shape mode weightings. The square root of the eigenvalue is 
the standard deviation of that particular shape mode (corresponding 
eigenvector) in the population. Hence the weightings can be sampled 
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from a normal distribution with a mean (zero, as data is centered), 
and standard deviation, to generate “typical” cells, or sampled from 
a standard deviation above or below the mean to generate “unlikely” 
cells. 

To deconstruct our actual cell shapes into a linear combination of 
shape-modes, we used the Open Genetic Algorithm Toolbox, im-
plemented in MATLAB [16]. The parent solutions of the genetic al-
gorithm were a 1 x 8 vector of shape-mode weightings. The fitness 
function of the algorithm was to minimize the root-mean-squared 
difference between the 240 points in the original cell, and the 240 
points of the cell created from the genetic algorithm. Rank scaling 
method and satellite range scheduling selection method was used, 
with a single crossover point, crossover probability of 90%, muta-
tion probability of 6-9% and an elitism of 10%. Note: the genetic al-
gorithm parameters reported here were used in this study to analyse 
all the cells. However, the genetic algorithm converged to a similar 
solution when top scaling was used and when the elitism and muta-
tion rate was varied. 

2.3 Finite-element model of solid and fluid domains 

Computational modeling was carried out in ANSYS (version 16), 
using geometry files processed in SolidWorks (version 2011).  

Fluid domain We simulated a single cell within a flow chamber. 
Flow inlet and outlets were 300 μm up and downstream of the cell. 
The side and upper walls were 200 μm away from the cell. This 
geometry approximates the flow chamber we intend to use in future 
experiments. Pressure boundary conditions of 6 and 0 Pa, were 
applied to the inlet and outlet, respectively, resulting in a pressure 
drop of 0.009 Pa/μm. This resulted in a maximum fluid velocity of 
4.7 x10-2 ms-1, and a maximum wall shear stress of 2.4 Pa on the cell 
surface, and ~0.8 Pa on the chamber walls. Our boundary conditions 
were selected to result in a similar wall shear stress as simulated by 
Ferko et al. (1 Pa wall shear stress on the chamber walls with ~1.5 
Pa maximum wall shear stress on the apical cell surface) [5]. The 
Reynolds number was ~9, indicating laminar flow. The forces acting 
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on the cell surface were exported from the fluid domain into the 
solid domain (one-way fluid-structure interaction). 

Solid domain The basal surface of the cell was constrained in all 
directions, simulating cell attachment with the extracellular matrix. 
We treated both the nucleus and the cytoplasm as compressible 
isotropic linear elastic materials, as assumed by Ferko et al. [5].  The 
full list of material properties is shown in Table 1. 

Meshing and solution procedure The fluid domain was meshed 
with 4-node tetrahedron elements. The solid domain was meshed 
with 10-node ANSYS solid 187 elements (4 vertices, 6 mid-edge 
nodes). Both fluid and solid domains were meshed using the patch 
conforming method, which firstly generates a surface mesh, then us-
es the Delaunay advancing front approach to mesh the remaining 
volume. Mesh independence analysis was conducted on both the sol-
id and fluid domain (see Fig. 2). 

 
Table 1. Constitutive properties of computational model 

Parameter Value Reference 
Poisson’s ratio, Nucleus 0.33 [3,5] 
Poisson’s ratio, Cytoplasm 0.33 [3,5] 
Young’s modulus, Nucleus 5100 Pa [3-6,11] 
Young’s modulus, Cytoplasm 775 Pa [3-6,11] 

 

Fig. 2 Mesh independence analysis of the fluid (left) and solid 
domain (right). The fluid domain solution stabilized at 1.4x105 num-
ber of elements. The plotted point is the velocity in the middle of the 
channel 100 μm downstream of the cell. Because the system Reyn-
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olds number is ~9, we can approximate the system using a numerical 
solution to laminar flow in a rectangular duct, as described by Spiga 
and Morino [17].  We estimate a maximum velocity of 0.50 ms-1 
which is in close agreement with our simulated value of 0.49 ms-1. 
To analyse the solid domain we monitored the Von Mises stress at 
two points: a point on the apical surface of the nucleus near the max-
imum stress concentration (red) and a point on the basal surface of 
the nucleus (green). The solid domain solution stabilized at 5.7x104 

number of elements with an element sizing of 2.5 μm. This sizing 
was used in both the typical and aptyical cell models. 

3 Results 

3.1 Shape variation of endothelial cell components 

Nucleus The median axis and nucleus width are shown in Fig 3. The 
mean centroid vector was  0 ± 1.5 pixels in both x and y, indicating 
that each slice of the nucleus had a centroid directly above the mid-
dle slice centroid. The average nuclear length was 144 ± 20.4 pixels. 
By sampling from these distributions it was possible to generate a 
typical nucleus as shown in section 3.2.  

Fig. 3 Variation in nuclei shape descriptors. The average median ax-
is and nucleus width are shown in red. The green and blue lines rep-
resent an envelope of 2 standard deviations above and below the av-
erage, hence nearly all nuclei fall within the envelope. The 
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maximum average width of the nucleus is at the centre, and is 40 
pixels x 0.132 μm/pixel resolution = 5.28 μm (on each side of the 
median axis). 
 

Cell edge Each cell in the population was deconstructed into a 
linear combination of shape modes. Of the 15 cells, 5 had non-
typical morphology. They had a first shape modes weighting greater 
than one standard deviation away from the average (the first shape 
mode explains 40% of the shape variation, Fig 4.). 

 
Fig. 4 Spatial descriptors of the cell edge. a: Illustration of polar-
coordinate description of the cell outline. There are 240 data points 
shown on the outline in blue, numbers refer to the point number. 
Hence each slice can be represented by a 1 x 241 vector. b: Percent-
age of shape variation explained by each of the shape modes found 
using PCA. To analyze our data set we considered the first 8 modes 
which accounted for >95% of the total variation. c: Goodness of fit 
of the genetic algorithm (blue) versus the actual cell outline (red). 
The actual nucleus is shown in green. To generate the blue cell out-
line the weightings found using the genetic algorithm were multi-
plied with the shape modes and added to the average cell outline. 
PCA analysis and genetic algorithm fitting have been extended to 
three dimensions, but for illustrative purposes are shown here in two 
dimensions. 
 
3.2 Computational model estimates of stress depend 
on cell morphology 
 

(a) (b) (c) 
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Fig. 5 Comparison of Von-Mises stress estimates in typical versus 
non-typical morphology. a: synthetic “typical” cell with the first 8 
shape modes within one standard deviation of the average. Cross-
sectional plane is indicated, as is nuclei position within the cell. 
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Stresses are evenly distributed within the nucleus, and concentrate 
on the upstream side below the nuclei. b: synthetic “non-typical” 
cell with the first four shape modes between one and two standard 
deviations away from the average. Stress is concentrated on the up-
stream side of the nucleus, and above the nucleus (on upstream 
side). We no longer observe stress concentration below the nucleus. 
To isolate the effect of different cell edge morphology and nuclei 
position within the cell, the same nucleus was used in both models. 
Identical computational parameters were used for both models with 
the exception of the spatial domain (same minimum element lengths, 
simulated flow etc.). c: Von Mises stress along the dotted lines 
shown in a a-b. Typical cell is in blue, atypical in red; thick lines 
with round data points correspond to the path parallel to flow direc-
tion. Thin lines with square data points correspond to basal-apical 
axis path. Each path has been normalized to the typical cell’s length 
(upstream to downstream, basal surface to apical). Nuclei bounda-
ries cause sudden jumps in the Von Mises stress profile. Stresses are 
symmetrical upstream and downstream of the nuclei in the typical 
cell, but are highly asymmetrical in the atypical cell.  

4 Discussion and Conclusions 

Overall we found little variation in nuclear shape in the population: 
both the median axis and median width curves are symmetric, and 
the nuclear centroid vector is zero, suggesting the nucleus has three 
perpendicular planes of symmetry.  Thus, overall size is the main 
component of morphological variation in the nucleus of static endo-
thelial cells. The size variation of the nucleus is relatively small 
compared to size variation in the overall cell. Taken together, this 
suggests that computational mechanical estimates of the isolated nu-
cleus can generalized as there is little morphological variation.  

We found that there was significant morphological variation in 
overall cell shape. If one of the five non-typical morphology cells 
had been selected for a cell-specific analysis, the findings could not 
be generalized. 

Our estimated stress findings were in agreement with that of 
Ferko et al. (<60 Pa) [5]. Even with a simple finite-element analysis 
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(linear, elastic, homogenous, compressible) we found substantial dif-
ferences in the stress distribution between the typical and non-
typical morphology cell models. The trend in model development is 
towards increasing sophistication and the inclusion of more discrete 
additional sub-cellular components [6,12-14]. We suggest that mor-
phological variation of these components will have a substantial im-
pact on mechanical estimates. Furthermore, this morphological ef-
fect is likely to increase with increasing model sophistication.  

In this study, we have examined endothelial cells in particular. 
However, the use of computational modeling to characterize cell 
mechanics is common in a number of other cell types [12-14]. The 
population-based shape description methods detailed here could be 
readily applied to these cell types, in particular, to adherent cells. 

The cell membrane was not explicitly modelled in our analysis: 
given limitations of the overlapping antibody spectra, it was decided 
that imaging cytoskeletal components would be of more use in fu-
ture, when the study is extended to incorporate cytoskeletal mor-
phology. However, using the outline of the cytoskeleton to approxi-
mate the boundary of the cell is valid for the purposes of 
computational modeling. This is the actin cortex is rich in f-actin 
and is located within 128+/-28 nm of the plasma membrane [15]. 
This slight difference is accounted for by our Gaussian blurring. 

We have demonstrated how morphological variation in the cell 
membrane has significant effect on the mechanical estimates of en-
dothelial cell behavior. In future, we aim to extend our study to in-
corporate spatial variation of the cytoskeleton: including alpha-
tubulin, f-actin and intermediate filaments. We also aim to extend 
our study to incorporate focal adhesions. Because they to function 
adhere the cell to the extracellular matrix, the size and spatial distri-
bution of focal adhesions directly affects computational estimates of 
endothelial mechanics [5]. 
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Abstract 

Introduction: Magnetic resonance elastography (MRE) utilizes mechanically 
induced shear waves to attain material property measurements of in vivo tissue. 
Finite element analysis (FEA) can be used to replicate the technique in silico to 
aid in the testing and development of the MRE post-processing software. This 
study aimed to investigate the influence of modelling parameters upon FEA of 
MRE.  

 Methods: A geometry consisting of a cylindrical insert embedded in a cuboid 
was created. The shear modulus of the background material was 3kPa whilst the 
shear modulus of the insert was varied from 4-9kPa. A harmonic load was applied 
to the upper surface of the cuboid whilst displacements upon other surfaces were 
fixed in a variety of directions. The interaction between the two regions of the 
model was also investigated in addition to element type used to create the mesh. 

Results: Fixing displacements at the boundaries in all directions caused 
significant overestimation of the shear modulus whilst defining a frictional 
interaction between the two regions prevented wave propagation throughout the 
model. The use of linear tetrahedral elements also resulted in large 
overestimations.  

Discussion: This study showed the dependence of FEA of MRE upon 
modelling parameters demonstrating the need for consistency within the literature 
as to which parameters are applied and emphasizing the requirement for further 
development of these parameters such that they are more reflective of real 
conditions.  

1. Introduction

Changes in the material properties of tissue are common in many disease states. 
Indeed in certain conditions such as breast cancer manual palpation to detect a 
change in material properties has long been used as a method of diagnosis (1). 
This method however is only appropriate for superficial abnormalities, dependent 
on the skill of the individual clinician (2) and is not quantitative. As such the 
potential benefits of an imaging technique that could quantify material properties 
are great. 
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Magnetic resonance elastography (MRE) is an MRI based technique that aims 
to achieve this (3). A motion-encoding gradient is utilized to characterize the 
displacements of shear waves induced into in vivo tissue using an external 
harmonically oscillating source. Filters are typically applied to remove noise and 
an inversion algorithm is then used to calculate a map of the material properties 
from these displacements (4).  

Testing and development of MRE post-processing software requires knowledge 
of the material properties of the test object such that the resulting MRE 
measurements can be validated. To this end there are a number of commercial 
phantoms available with quoted stiffness values (5). Such phantoms are however 
limited since they do not allow the user variations in geometry or material 
properties. To overcome this several studies have described creation of in-house 
phantoms using agar gel (6,7). However this process is also time consuming and 
generally requires mechanical testing of the material to attain its true properties, a 
process requiring its destruction.    

Use of synthetic in-silico phantoms is a potential solution to these problems. 
Material properties are defined within the pre-processing stage of finite element 
analysis (FEA). This enables a direct comparison between the prescribed material 
property values and the values attained through analysis of the data using the 
MRE post-processing software. Using FEA in this manner offers the potential to 
iterate over a large range of geometries and material properties allowing 
optimization of the MRE methodology and the ability to obtain quantitative data 
on issues of clinical interest such as minimum lesion size which may be observed 
on the elastogram.  

To date a number of MRE simulation methodologies have been described in 
detail. Chen et al. (2005) (8) used a 2-dimensional model to show increased 
accuracy in simulated shear wavelengths at higher densities and lower shear 
moduli. Leclerc et al. (2013) (9) iteratively altered 3-dimensional FEA model 
parameters to match with wave propagation in a phantom. Meanwhile Kolipaka et 
al. (2009) (10) compared uniform beam, plate and shell phantoms with 3-d FEA 
models of the same structures showing good agreement between MRE scans and 
FEA datasets. The purpose of FEA development here was to create a technique 
that could validate inversion algorithms. A more clinically driven study by 
Thomas-Seale et al. (2011) (11) investigated idealized atherosclerotic plaques to 
show frequency dependent wave disruptions in such geometries. 

Despite its use in MRE development there has been little research into the 
influence of modelling parameters on inversion of FEA datasets. This paper aims 
to investigate the effects of varying boundary conditions, element type and 
constraints in modelling of MRE. 

2. Methods

All simulations have been performed using Abaqus Version 6.10-1 (Dassault 
Système Simulia Corp., Providence, Rhode Island,USA). An explicit method was 
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used with fixed time increments. The size of these increments was derived using 
the element-by-element stable increment estimator in-built to Abaqus. Whilst the 
increment was dependent upon the type of element used and the size of the mesh it 
was of order 10-5-10-6s for all simulations. 

2.1. Geometry 

The geometry was created using the inbuilt computer aided design (CAD) 
package in Abaqus/CAE. A cylindrical insert with a radius of 10mm was placed in 
a cuboid of dimensions 80x80x50mm3 (figure 2). Harmonic loads of 100Hz were 
applied in the z-direction over a nodal region on the upper surface of the model. 

 

2.2.  Material Properties 

The background material was assigned a shear modulus of 3kPa whilst the 
shear modulus of the insert was varied from 4-9kPa. Both materials were 
prescribed a density of 1047kg∙m-3 and were defined as viscoelastic using the 
Kelvin-Voigt model of viscoelasticity with a shear viscosity of 1Pa∙s throughout. 
The purpose of this viscosity was to induce damping in the model and reduce the 
effects of reflections. 

Figure 1: Modelling workflow showing integration of FEA data with MRE post-
processing software. 
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2.3. Boundary Conditions 

Boundary conditions were applied to all surfaces aside from that over which 
the load was applied. Simulations were performed with displacements fixed in 
each direction independently whilst the remaining two directions were 
unconstrained, and with displacements fixed in all directions simultaneously. 

2.4. Constraints 

Three methods of constraining the two regions of the model to each other were 
investigated. Firstly the two regions were merged together in the assembly module 
with the intersecting boundaries retained. Secondly the two regions were tied 
together using the constraints tool. Finally a frictional interaction was defined 
between the different regions of the model. Values of 0.5, 0.75, 1 and 1.25 were 
tested for the coefficient of friction.  

2.5. Mesh 

Eight-noded hexahedral (C3D8R), 4-noded linear tetrahedral (C3D4) and 10-
noded quadratic tetrahedral elements (C3D10M) were compared. The C3D8R and 
C3D4 elements were meshed defining a 1mm element length on all edges. Since 
the C3D10M elements are of higher order in comparison to the C3D8R and the 
C3D4 elements a lower mesh density was used with a 1.25mm element length 
defined.   
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Figure 2: The model geometry (a), and masks applied to the (b) background and (c) 
insert region for calculation of the respective shear modulus values. 

2.6. Post-Processing 

Displacements in the z-direction were extracted at eight time points 1.25x10-3s 
apart starting at 0.08s from the central xy-plane with pixel sizes of 1mm2. This 
data was then exported to Matlab R2013a (Mathworks, Natick, Massachusetts, 
USA) where it was reformatted to represent a set of displacement images at each 
time point. A 1-D Fourier transform was then applied to the data in the temporal 
direction creating a set of frequency dependent complex wave images. The second 
of these images corresponds to the frequency of the induced waves and was 
therefore selected for further analysis. The 2-D direct inversion algorithm was 
then applied to this image to create a map of the shear modulus, more commonly 
referred to as an elastogram (12). 

Regions of interest were then identified and masks created to isolate these. The 
areas of these masks were selected avoiding pixels that were within two 
millimeters of boundaries between the different regions within the model and 
pixels that were within 5mm of the edge of the region over which the inversion 
was performed. The mean value within each region of interest was calculated.  
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2.7. Convergence Studies 

Convergence studies for each different element type used and convergence 
assumed to have been achieved when the change in mean value from one 
increment in mesh density to the next was below 2%. 

 

  

Figure 3: Examples of the complex wave images and respective elastograms from the 
models prescribed with shear modulus values of 4, 6 and 9kPa for the insert. 

Complex Wave Elastograms 

4kPa 

6kPa 

9kPa 
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3. Results 

3.1. Boundary Conditions 

Measurements in both the background and the insert were overestimated for all 
prescribed shear moduli with all the boundary conditions (figure 4). In the inserts 
the greatest errors were obtained when displacements were fixed in the x-
direction, with errors larger than 20% for all prescribed insert values. Similar 
overestimations were also shown when displacements were fixed in all directions. 
The size of the overestimations was greatly reduced when fixed in the y- and z-
directions with errors in the range of 7-13%. 

The size of the overestimations were reduced in the background. The largest 
overestimation for the majority of the prescribed background values was obtained 
when displacements were fixed in all directions (7-13%). The range of error 
values was similar for all three directions fixed independently (6-9%). 

 
 

 
 

Figure 4: Graphs depicting the shear modulus measurements with the different 
boundary conditions investigated in this study. The encastred boundary condition leads to 
large overestimations in both the background and insert regions of the model. 

3.2. Constraints 

The background and insert measurements from the tied constraints and the 
merged parts simulations matched each other almost exactly. Visual inspection of 
complex wave images showed propagation of the wave in both sections of the 
model (figure 5). In all of the frictional interaction simulations the measurements 
in the background were slight underestimations of around 2.5%. Large errors were 
obtained in the inserts however, with overestimations typically in excess of 300%. 
Inspection of the complex wave images showed that whilst wave propagation 
could be observed in the background, the amplitudes of the waves within the 
inserts was minimal. 
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3.3. Mesh 

There was good consistency between the shear modulus measurements in the 
C3D8R and C3D10M elements (figure 6). There were large overestimations for 
the C3D4 elements in both regions of the model (25-30%). 

 
4. Discussion 

Modelling parameters can have a significant effect on the accuracy of the shear 
modulus measurements produced by the inversion algorithm. To this end the use 
of C3D4 elements dramatically increased the size of overestimations. It is likely 
that this effect was due to tetrahedral elements being structurally stiffer than 
hexahedral elements and has important implications when meshing more complex 
structures that are incompatible with a hexahedral mesh (13,14). It was shown 
here that the problem can be resolved by using the quadratic tetrahedral C3D10M 
elements, though this increases computational time.  

The method by which the boundary between two parts within the model is 
defined also has an impact in this respect. Whilst the tied condition and merging 
of parts is unlikely to truly represent the conditions in the human anatomy where 
sliding of organs with respect to the surrounding tissue is common (15), a 
frictional interaction prevents transfer of the wave from one region to another. In 
this paper the resulting lack of wave propagation in the insert leads to large 
overestimations of the shear modulus. 
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Figure 5: Complex wave images from the different constraint conditions. Whilst there is 
clear wave propagation when the parts are tied and merged together, wave propagation in 
the insert is greatly reduced when the constraint is defined using a fractional coefficient. 

Figure 6: Measured values of the shear modulus for the background and insert regions of 
the model when meshed with different elements. Whilst the C3D8R and C3D10M elements 
produce similar measurements, the C3D4 elements result in large overestimations in both 
regions of the model. 
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The choice of boundary condition in MRE modelling is important and has a 
clear impact upon results. Fixing displacements in all directions has often been 
used in FEA simulations of MRE (9–11), though in reality the boundaries in MRE 
will not be totally fixed: waves will pass through a patient into the scan table and 
with respect to phantoms, the waves will also be transmitted into the phantoms 
case. Applying a boundary condition where motion is fixed in just one direction 
and uninterrupted in the other two is also not representative of reality, though also 
commonly used (8,16). Unfortunately the range of boundary conditions offered by 
Abaqus, and indeed most other FEA software packages, is fairly limited typically 
allowing displacements to be either fixed or unconstrained in each direction. More 
realistic boundary conditions would take into account the interaction between the 
model and the surrounding world, though further work is required to determine the 
nature of such an interaction. The boundary conditions investigated in this study 
produced a wide range of results with fixing in all directions seeming to result in 
large overestimations of the stiffness in both the background and insert of the 
model. To this end fixing in the y-direction alone typically produced the most 
accurate results in both regions. This was perhaps because motion of the wave in 
the shear planes was undisturbed when the boundary condition was applied in this 
direction.  

Whilst boundary conditions present a clear problem in the definition of the 
model and attempting to represent realistic conditions, they also present a problem 
in the MRE inversion. Firstly the existence of a boundary invalidates the 
assumption of an infinite homogenous medium upon which the algorithm is 
derived (17). Additionally waves reflected off the boundary interfere with those 
induced and result in interference patterns appearing in the wave image. Whilst 
reflections and scattering are prevalent in the human body, they are typically more 
noticeable in phantoms and FEA simulations, where the external boundaries of the 
model and the boundaries between regions within the model are clearly defined 
(18,19). It is therefore likely that in order to accurately model these regions more 
complex boundary conditions and constraints than those currently used are 
required. 

 
5. Conclusions 

This paper shows the importance of modelling parameters in FEA of MRE. In 
particular the selection of boundary condition has a significant impact on 
simulations with large variations between the commonly used conditions used 
throughout the literature.  
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Abstract   Comparison of whole-body medical images acquired for a given pa-
tient at different times is important for diagnosis, treatment assessment and sur-
gery planning. Prior to comparison, the images need to be registered (aligned) as 
changes in the patient’s posture and other factors associated with skeletal motion 
and deformations of organs/issues, lead to differences between the images. For 
whole-body images, such differences are large, which poses challenges for tradi-
tionally used registration methods that rely solely on image processing techniques. 
Therefore, in our previous studies, we successfully applied image registration us-
ing the patient-specific biomechanical model in which predicting deformations of 
organs/tissues is treated as a non-linear problem of computational mechanics. 
Constructing such models tends to be time-consuming as it involves tedious image 
segmentation which divides images into non-overlapping constituents with differ-
ent material properties. To eliminate segmentation, we propose Fuzzy C-Means 
(FCM) classification to assign material properties at the integration points of a fi-
nite element mesh. In this study, we present an application of the FCM tissue clas-
sification algorithm and analyse sensitivity of the accuracy of whole-body image 
registration using non-linear patient-specific finite models to the FCM classifica-
tion parameters. We show that accurate registration (within two times of the image 
voxel size) can be achieved. 

1 Introduction 

 Radiographic image registration is important for disease diagnosis, 
treatment assessment and surgery planning [1-3]. In recent years, numerous image 
processing-based registration methods have been successfully developed [3-5]. 
However, many of those methods were prove to be effective for selected body 
segment, such as the brain, the breast, lungs and prostate [2, 6, 7]. Problems 
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involving large differences between the source and target images (i.e. whole-body 
CT images), still remain a challenge. Therefore, biomechanical modelling, in 
which predicting the deformation of organs/tissues is treated as a computational 
problem of solid mechanics, has been recommended by many researchers [8-10]. 

The finite element (FE) method has been historically used to predict deformations 
of body organs/tissues [11-13]. However, creating a patient-specific finite element 
model is a time-consuming process which involves image segmentation, mesh 
generation and material property assignment [14, 15]. Despite substantial research 
effort, automatic medical image segmentation remains an unsolved problem [16]; 
in particular, when anatomical features depicted in the images are affected by dis-
ease/pathology and boundaries between different tissues and organs are difficult to 
distinguish (which is the case for whole-body CT images and abdominal organs). 
Determining patient-specific constitutive properties of the human body tissues is 
another challenge; despite recent progress in magnetic resonance (MR) and ultra-
sound elastography [17], reliable non-invasive method to determine such proper-
ties in-vivo has not been created yet [18].  

In our previous studies, the Fuzzy C-Means (FCM) cluster algorithm was pro-
posed to assign material properties at integration points of the computational grid 
directly from medical images, without time-consuming image segmentation [19]. 
As a further development, we applied the FCM algorithm to create a patient-
specific whole-body model for computing deformations of body organs/tissues for 
whole-body CT image registration [20, 21]. The FCM determines the cluster cen-
tres (tissue types) for the given data samples (image intensity of pixels in the 
CT/MR scans) and probabilities (membership functions) for each data (image in-
tensity of a pixel) belonging to the calculated cluster centres [22].  

Once the tissue types (cluster centres) are determined, the material properties at 
the integration points of the computational grid can be calculated using the mem-
bership functions (probabilities) for each pixel (intensity at the integration point) 
and all tissue types (cluster centres) [19]. The computed material properties are 
‘fuzzy’ rather than ‘exact’ values and there are no clear boundaries between tis-
sues [20]. However, such ‘fuzzy’ material properties do not compromise the accu-
racy of prediction of tissue/organ deformations as it has been indicated in our pre-
vious studies that the material properties make a weak impact on the predicted 
deformations for problems where loading is prescribed as forced motion of the 
boundaries [14, 18]. 

A challenge in application of FCM for tissue classification is how to determine the 
tissue types in a given set of medical images. There is no standard criterion to de-
termine how many tissue types (cluster centres) are needed to predict defor-
mations with the accuracy sufficient (typically two-times the in-plane voxel size ) 
for whole-body CT registration [20].  
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This paper presents an application of the fuzzy tissue classification using the FCM 
algorithm for creating patient-specific whole-body biomechanical models for pre-
dicting tissue/organ deformations for registration of whole-body CT images and 
analyses sensitivity of the registration accuracy to the FCM algorithm parameters. 
For a whole-body CT image dataset, five major abdominal body organ/tissue types 
can be recognised from the images. As the lung is a large body organ and it can be 
easily distinguished from the CT images, we evaluated the accuracy of whole-
body image registration using the patient-specific finite element model and the 
proposed fuzzy tissue classification method by comparing contours of the lung in 
the registered images (source images warped using deformations predicted by pa-
tient-specific biomechanical model) and target images, and the results show that 
misalignments are within two-times the image voxel size.  

2 Methods 

2.1 Whole-Body CT Image Dataset 

The whole-body CT image dataset analysed in this study was acquired 
from the publicly available Slicer Registration Library (Case #20: Intra-subject 
whole-body/torso PET-CT (http://www.na-
mic.org/Wiki/index.php/Projects:RegistrationLibrary:RegLib_C20b). One image 
set is treated as moving/source image and another one is fixed/target image. 

 
The original image dataset has resolution of 0.98mm×0.98mm×5mm. Following 
our previous study [23], we resampled the image-sets to 1mm 1mm 2.5mm using 
the built-in ‘Resample Scalar Volume’ tool in the 3D SLICER 
(http://www.slicer.org/) ˗˗˗ an open-source software for visualisation, registration, 
segmentation and quantification of medical data developed by Artificial Intelli-
gence Laboratory of Massachusetts Institute of Technology and Surgical Planning 
Laboratory at Brigham and Women’s Hospital and Harvard Medical School [24]. 

 

2.2 Geometry Discretisation 

The 3-D patient-specific geometry was extracted from CT images using the 
‘Intensity Threshold Segmentation’ module available in 3D SLICER software 
package [24]. Following [25], we used 8-noded hexahedral elements with one 
integration point to build the computational grid. Although tetrahedral meshes are 
popular [26], 8-noded hexahedral elements with one integration point do not 
exhibit volumetric locking that occurs when 4-noded tetrahedral elements are 
applied to incompressible/nearly incompressible continua such as soft tissues [27] 
and tend to offer better computational efficiency than tetrahedral meshes (for the 
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same characteristic size of an element, less hexahedrons than tetrahedrons are 
needed to mesh a given volume). The computational grid consists of 51,479 
elements and 55,944 nodes, as shown in Fig. 1.  

 
Fig. 1 Spatial discretisation of the whole-body geometry using hexahedral elements. The compu-

tational grid consists of 51,479 elements and 55,944 nodes. 

2.3 Fuzzy C-Means Method for Tissue Classification 

The Fuzzy C-Means (FCM) algorithm is used to calculate cluster centres 
for given data samples [22]. We have successfully used it in our previous studies 
to assign material properties at the integration points when computing brain 
deformations caused by craniotomy-induced brain shift [19], and for predicting 
the deformation field of body organs/tissues for whole-body CT image registration 
[20]. For tissue classification, the data samples are image intensity of all pixels in 
the image. Once the number of tissue types is selected, the FCM algorithm 
classifies pixels (data samples) as belonging to different groups and calculates the 
cluster centre (image intensity) for each group by computing the membership 
functions (probabilities) that link image intensity at each pixel with all the 
specified tissue types, by minimizing the objective function JFCM [19, 22]: 

1 1

( , )
N C

q
FCM ij i j

i j
J u d x                                  (1) 

where N  is data samples (i.e. pixels in CT images), C  is the number of cluster 
centres (tissue types/classes), q  is the weighting factor referred to in the literature 
[28] as the fuzziness degree of clustering, ij  is the fuzzy membership function 

that expresses the probability of one data sample ix   (pixel) belonging to a speci-
fied cluster centre j  (tissue type/class), and d  is the spatial distance between da-
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ta sample ix and cluster centre j . We used the fuzziness degree of clustering q of 
2 which is a value commonly applied for soft tissue classification [29, 30]. 
 
The cluster centres j  (tissue classes) and the fuzzy membership functions ij  
can be calculated by minimizing the objective function (1). But, the number of 
cluster centres (tissue types/classes) C remains unknown. Therefore, we use a 
patient’s whole-body CT image dataset as an example to analyse the selection of 
this parameter in detail in Section 3. 

2.4 Loading and Boundary Conditions 

In this study, computation of deformation field within the body 
organs/tissues is formulated as a displacement-zero-traction problem where 
loading is prescribed as forced motion of the boundary. For such formulation, the 
predicted deformations within the analysed continuum depend very weakly on the 
mechanical properties [11]. We select the spine (vertebrae) as the boundary to 
apply the forced motion as the spine can be easily distinguished from surrounding 
soft tissues in CT images. The displacement (forced motion) to aligns the spine in 
source and target images can be determined using rigid registration (we used 
‘Rigid Registration’ function in the 3D SLICER [24]) for each vertebra.  
 
We also considered using landmarks located on the skin as a source of information 
about motion of the boundary. However, as there are too few features on the 
abdominal skin to define such landmarks and they proved to be rather difficult to 
reliably locate/distinguish in the source and target images, no constraints and 
contact were applied to the body surface (skin) when conducting registration of 
the whole-body CT images. The proposed biomechanical model, however, allows 
for adding correspondence between easily distinguishable surface points as 
constraints if desirable. 

2.5 Numerical Solutions 

The non-linear patient-specific finite element model is solved using our 
previously developed Total Lagrangian Explicit Dynamics (TLED) finite element 
algorithm [25, 31, 32]. The algorithm utilises central difference method to 
discretise the temporal derivatives so that the discretised equations are integrated 
in stepping forward manner without any iteration. To accelerate the convergence 
to steady state, a dynamic relaxation is used [32]. For further improvement of 
computation efficiency, the TLED has been parallelised to harness computational 
power of Graphics Processing Units (GPUs) as shown in [33].  
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3 Results and Discussion 

3.1 Image Intensity Distribution of Whole-Body CT Images 

The FCM algorithm we applied to assign material properties at the 
computational grid (finite element mesh) integration points is a statistical feature 
classification method [34], and it calculates cluster centres (tissue types) and 
membership functions for data samples (i.e. image intensity of pixels depicted in 
CT images) using Equation (1). As pointed out in Section 2.3, the number of 
cluster centres (tissue types/classes, parameter in Equation (1)) is an unknown 
parameter. Determining this number requires analysis of the statistical constituents 
of the images represented by distribution of the image intensity. Fig. 2 shows the 
statistical distribution of image intensity for all pixels within a given patient’s 
whole-body CT image dataset. 

As can be seen in Fig. 2, in the image dataset analysed here, the intensity varies 
from -1200 to 1500 and divides into six groups: (1) most pixels are concentrated at 
four clusters (i.e. group A, C, D and E in Fig. 2, with the cluster centres at -850, -
80, -20 and 80, respectively); (2) the remaining pixels are equally distributed 
between two groups (i.e. group B ˗˗˗ from -600 to -200 and group F ˗˗˗ from 400 
to 1500). Therefore, a total of six statistical groups (clusters) can be distinguished 
and used for tissue classification (see Table 1). 

Fig. 2 Statistical distribution of image intensity for a patient’s whole-body CT image dataset. 

C
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3.2 Tissue Classification 

In Section 3.1, we analysed the statistical distribution of image intensity for 
a patient’s whole-body CT image dataset. In this section, we relate this 
distribution to the anatomical constituents (i.e. major body organs/tissues) of the 
human body. Fig. 3 shows a typical transverse slice of whole-body CT image. 
Average positions to different classes are: 1) gas-filled spaces (abdominal 
cavities); 2) fat; 3) muscles and abdominal organs (i.e. livers, kidneys); 4) 
intestines (stomach); and 5) bones. These five anatomical tissue types and their 
corresponding average image intensity are listed in Table 1. The shear modulus 
for these five anatomical tissue classes calculated using the FCM algorithm are 
given in Table 2. 

 
Fig. 3 A typical transverse section slice from a whole-body CT image dataset. 

The number of cluster centres (parameter C  in Equation (1)) is one of the 
parameters controlling the results of tissue classification in the FCM algorithm.  

Table 1 Tissue types and associated image intensity 

Intensity -900 -300 -80 -20 80 950 
Statistical  

classification 
Group A Group B Group C Group D Group E Group F 

Anatomical 
classification 

Class 1: Gas-filled 
Spaces  

(abdominal cavities) 

Class 2: 
Fat 

Class 3: 
Muscles 

(Ab-
dominal 
Organs) 

Class 4: 
Intestines 

(Stom-
ach) 

Class 5: 
Bones 
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Table 2 Material properties for tissue types 

 Class 1 Class 2 Class 3 Class 4 Class 5 
Shear  

modulus (kPa) 0.53 1.07 3.57 4.05 rigid 

  [35] [36] [37, 38] [39]  
 

3.3 Parametric Study 

Following Li et al. [20] and Mostayed et al. [40], we evaluate the 
registration accuracy by comparing the edges/contours of a body organ in 
registered (i.e. source image warped using the deformations predicted by the non-
linear patient-specific finite element model) and target images. As the lung is a 
large body organ that can be reliably distinguished from the surrounding tissues, 
in this study we qualitatively evaluate the registration accuracy by comparing the 
contours of the lung extracted from the registered and target images. Following 
previous studies [15, 40], we consider any misalignment less than two-times the 
voxel size of the original source image to be successfully registered. 

 
Sensitivity of the accuracy of whole-body image registration using non-linear 
patient-specific finite models to the number of cluster centres used by the FCM 
algorithm (parameter C  in Equation (1)) is demonstrated in Fig. 4. When the 
number of cluster centres is equal to eight (Table 3), the five major tissue classes 
can be successfully distinguished and the contour of the lung extracted from the 
registered images is very close to that extracted from the target image (i.e. 
distance between these two contours is within two-times the image voxel size, see 
Fig. 4). For less than eight cluster centres the FCM algorithm is not able to 
distinguish five major tissue types, which results in somewhat poorer accuracy 
when predicting deformations of the body organs/tissues. 

Table 3 Tissue classification with different cluster centres (tissue types)  

Cluster Centres  Image Intensity 
5 -750 -400 -98 40 400 
6 -750 -600 -350 -96 40 400 
7 -750 -600 -350 -97 30 250 600 
8 -750 -600 -350 -105 -30 40 250 600 

4 Conclusions 

Patient-specific biomechanical modelling for whole-body CT image 
registration often involves subjective and time-consuming image segmentation 
that divides whole-body CT scans into non-overlapping constituents with different 
material properties. To eliminate the need for tedious image segmentation, we 
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have successfully developed a fuzzy tissue classification for creating the non-
linear patient-specific biomechanical models without image segmentation. In this 
paper, we analysed the statistical and anatomical constituents for a patient’s 
whole-body CT image dataset, and sensitivity of the registration accuracy for 
whole-body CT images using non-linear patient-specific finite element models to 
the FCM classification parameter.  
 
The results suggest that when applying the FCM algorithm to assign material 
properties at the integration points of finite element mesh directly from the whole-
body CT images. The number of cluster centres needs to be larger than the number 
of tissue types that need to be distinguished. The accuracy of prediction of 
organ/tissue deformations when applying such models in whole-body CT image 
registration tend to be affected by the number of cluster centres and associated 
tissue classification. However, the effect is moderate and even for relatively small 
number of cluster centres prediction can be obtained. 

 
Fig. 4. Comparison of lung contours from the registered images (i.e. source image warped using 
deformations predicted by the non-linear patient-specific finite element model and the fuzzy tis-
sue classification method). The red dashed line represents predicted deformations using 5 cluster 
centres; the blue dashed line represents predicted deformations using 6 cluster centres; the pink 
solid line represents predicted deformations using 7 cluster centres and the blue star line repre-

sents predicted deformations using 8 cluster centres. 

 
To validate the accuracy of registration for whole-body CT images, in this study 
one patient’s whole-body CT image dataset was analysed using the patient-
specific non-linear finite element model and fuzzy tissue classification. 

cluster centres = 5
cluster centres = 6
cluster centres = 7
cluster centres = 8
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Registration accuracy was qualitatively evaluated by comparing contours of the 
lung from the registered (i.e. source image warped using deformations predicted 
by non-linear patient-specific finite element model) images and target images. The 
misalignments were within two-times the image voxel size.  
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Abstract. We present a study of accuracy and execution speed using
a novel implementation of a nonlinear anisotropic fiber-reinforced mate-
rial model within a Total Lagrangian Explicit Dynamic (TLED) finite
element (FE) framework, developed for execution on Graphics Process-
ing Units (GPUs). Full integration and selective-reduced integration has
been developed for trilinear hexahedral elements and tested in compari-
son to the classical under-integrated TLED scheme. Comparison is per-
formed with respect to an established FE code. Results indicate that by
using the presented method, excellent accuracy can be retained while
greatly accelerating solution times.

Keywords: Graphics Processing Unit, GPU, GPGPU, Finite element
analysis, FE, nonlinear constitutive modeling, anisotropy, artery

1 Introduction

Finite element (FE) simulations are increasingly employed to assess and improve
the performance of biomedical devices and procedures. Examples are perfor-
mance analyses of stents [1, 2] or arterial clamping device design optimization
[3]. Speed requirements are less stringent when these analyses are performed pre-
or postoperatively. Even so, for models with noteworthy geometrical and mate-
rial complexity, solution speed is an important barrier keeping these simulations
from being integrated into the clinical workflow. Moreover, also intra-operative
utilization of finite element analysis is increasingly proposed as a solution, i.e.
for soft tissue overload prevention [4] or for brain shift estimation [5]. For these
situations, but also for virtual surgical simulators, a continuum-mechanical rep-
resentation has long been impossible due to the required update rates. In the
past decade, alongside the evolution of computational architectures and advance-
ment of computational power, a number of fast FE solvers have appeared in the
literature ([6–8]). To the best of the authors’ knowledge, Miller et al. (ref. [9])
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were the first to publish research on an efficient nonlinear real-time FE solution
to intraoperatively provide information about tissue response on patient-specific
anatomy during actual surgery. The current paper expands upon the Total La-
grangian Explicit Dynamic (TLED) algorithm proposed by this research group,
presenting results of an efficient 3D implementation on the GPU using Nvidia
CUDA technology. In particular, the accuracy and solution speed of the simula-
tion of an expansion of an artery modeled with a nonlinear anisotropic material
using our implementation is compared to that of an established implicit FE
solver FEAP (University of California, Berkeley, USA). Furthermore, differences
in computation speed between different element integration types and between
isotropic or anisotropic material models are evaluated.

2 Materials and methods

2.1 3D TLED algorithm on the GPU

TLED is an explicit dynamic, large strain solver that uses the initial configura-
tion of the domain as the reference configuration. The work-conjugate Second
Piola-Kirchhoff stress and Green strain are used, and the primary kinematic vari-
ables are the deformation gradient and displacements. This combination is suit-
able for hyperelastic materials which are generally given in total rather than rate
form. An additional advantage of the algorithm is that shape function deriva-
tives with respect to the initial configuration are constant and can be computed
before the time-marching phase. For a detailed description of TLED, see [9, 10].

The conventional implementation of TLED on GPUs is split into several ker-
nels (parallel functions running on the GPU hardware) enabling the processing
of large numbers of elements concurrently. This paradigm is used in all phases of
the solver algorithm: computation of internal forces, time-marching and the im-
position of boundary conditions. Similar in function and benefits to distributed
computing systems used for large simulations, CUDA parallelization is light-
weight, tightly-coupled and has much higher granularity in the work units and
threads executing together. The management the internals of GPUs are left
largely to the programmer. These involve single and double precision computing
units, different memory types of different bandwidths, latencies and capacity,
instruction issue pipelines and schedulers, etc. For a more detailed description
of CUDA TLED implementation, consult e.g. [11, 12] and for in-breadth testing
of TLED on GPUs, see [4].

2.2 Element implementations

Three element types were implemented into the current platform, all of which
are of the tri-linear hexahedral type, with varying integration procedures.

Under-integrated linear hexahedron: Classically used in TLED, the under-
integrated (UI) linear hexahedron uses first order integration of the stress tensor
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at the centroid of the element. The combination of the single integration point
and the first-order isoparametric formulation leads to some strain modes of the
element being stress-less - a phenomenon called hourglassing. Hourglassing can
be remedied to an extent, however, by applying one of several additional algo-
rithms: basic orthogonal hourglass control [13] and its shift to a total Lagrangian
worldview [14], or the more advanced assumed strain stabilization [15] used in
several commercial tools. Suboptimal behavior for complex anisotropic materials
can be expected, which can be remedied by increasing the mesh density used to
discretize the boundary value problem. Under-integration is the cheapest solu-
tion in terms of both memory utilization and mathematical operations required,
even when accounting for basic hourglassing schemes. This element is used as a
benchmark reference for computational requirements and speed.

Fully integrated linear hexahedron: Full integration (FI) was also im-
plemented into the TLED code, using the conventional second order Gaussian
quadrature formula. Being the quintessential integration scheme for the tri-linear
hexahedron, it proves very practical for validation and comparison purposes to
other solvers. A great benefit of performing the integration in the element’s nat-
ural coordinate space is the fact that in this configuration the shape function
derivatives at points sampled by the full integration method are a simple function
of the shape function derivatives at the centroid, and can easily be computed on-
the-fly rather than being brought in by expensive memory fetching operations.
Despite the accuracy provided by this element formulation, incompressibility or
near-incompressibility of this element formulation often leads to pressure locking,
increasing the volumetric stiffness unnaturally and significantly deteriorating the
quality of the results. From a computational standpoint, relative to the UI linear
hexahedron, this element is eight times more expensive (conservative) in terms
of operations and carries a minimum of twice the expense in memory. The latter
point depends heavily on the implementation.

Selective-reduced linear hexahedron: The third element formulation that
was implemented is the selective-reduced integration (SRI) element. Here, a full
integration of the deviatoric terms of the stress tensor is performed in the eight
integration points of the element and, additionally, a first order integration is
done at the centroid for volumetric terms. The two phases are integrated sep-
arately and added to the total internal force vector. This element does not ex-
perience pressure locking, but is susceptible to shear-locking. As with the fully
integrated element, it benefits from the same on-the-fly calculation of the shape
function derivatives at the points sampled for the deviatoric terms, while cen-
tral values are ready for use. Nevertheless, it is the most demanding element
type to compute, requiring approximately nine times more operations than the
under-integrated element and slightly higher memory requirements than the fully
integrated element.
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For all elements, per the mathematical theory of Gaussian integration, the
actual integration is performed in the element’s natural coordinate space. A pull
back of the initial configuration (used in total Lagrangian) is necessary by way
of the element Jacobian, previously computed for the deformation gradient.

Pressure quadrilateral: Pressure loading has also been added to the base
TLED algorithm. Quadrilaterals belonging to the loaded surface are processed
and final discrete force contributions are computed using full integration over
elements’ surfaces. This deformation-dependent distributed load is the only seg-
ment of the solver computed using updated Lagrangian values.

2.3 Material implementations

Two nonlinear hyperelastic material models are implemented, both of which are
described by their strain energy density function (SEDF) Ψ. This function can
be additively decomposed into a deviatoric and a volumetric part as

Ψ = Ψdev +Ψvol. (1)

For both material models, the volumetric component of the SEDF was defined
as

Ψvol =
K

2
(J − 1)2, (2)

with K the bulk modulus and J the determinant of the deformation gradient.
The second Piola-Kirchhoff stress tensor S can be derived from the SEDF as

S = 2
∂Ψ

∂C
. (3)

neo-Hookean material: The first material model implemented is the isotropic
hyperelastic neo-Hookean model Ψdev = Ψiso

dev, using the following form for the
deviatoric part of the strain energy density function:

Ψiso
dev =

μ

2
(I1 − 3), (4)

where μ is the shear modulus and I1 is the first invariant of the deviatoric part
of the right Cauchy-Green deformation tensor C.

GHO-model: The second material model implemented is the Gasser-Holzapfel-
Ogden (GHO) model, which describes a fiber-reinforced anisotropic material that
also accounts for dispersion of the fibers. The deviatoric component of the SEDF
contains an isotropic and an anisotropic term, Ψdev = Ψiso

dev+Ψani
dev corresponding

to the matrix material and to the collagen fiber families, respectively [16]. The
isotropic term corresponds to the deviatoric term of the neo-Hookean material
(equation 4) while the anisotropic term corresponds to

4

108



Ψani
dev =

∑
i=4,6

k1
2k2

[
ek2(κI1+(1−3κ)Ii−1)2 − 1

]
, (5)

where k1 > 0 is a stress-like parameter, k2 > 0 is a dimensionless parameter and
κ ∈ [0, 1

3 ] is a parameter related to the dispersion of the fibers, with the lower and
upper limit corresponding to no fiber dispersion and fully dispersed fibers (i.e.
isotropy), respectively. The material parameter, angle (φ), is defined between
the local circumferential direction and the two fiber directions, symmetrically,
in the plane of the material.

2.4 Sample problem

A cylindrical mesh consisting of 540 elements (three layers of 180 elements) and
800 nodes was created to test the performance of different material implementa-
tions and elements w.r.t. accuracy and their relative speed of execution (Fig. 1).
The total height of the cylinder is 90mm, inner and outer diameters are 40mm
and 70mm, respectively. The simulation is driven by a pressure boundary con-
dition on the inside surface of the mesh, while the top and bottom kinematic
boundary conditions have two configurations: ‘free’, where nodes on the top and
bottom planes (the extremes in z-direction) are constrained in the z-direction
but are otherwise free to displace, and ‘locked’, where the top and bottom planes
are fixed in all degrees of freedom. The free boundary condition additionally has
select nodes locked in the x- or y-direction to prevent rigid body rotation, but
does not disturb the expected symmetry in the solution. The model with the
locked boundary conditions accentuates shear stresses in the results, as shear is
largely absent in the free expansion configuration.

Materials used are the isotropic neo-Hookean and the anisotropic GHO fiber-
reinforced arterial tissue model. The material properties used can be found in
Table 1. Note particularly the relation of shear and bulk moduli, always yielding
a Poisson’s ratio of 0.4995 used to enforce near-incompressibility.

Pressure loading for models using the GHO material model are performed
up to 120mmHg, whereas models including the neo-Hookean material model are
pressurized up to 8.5mmHg, due to the significant difference in the stiffness of
the models. In this way results from both the stiffer and softer materials lead to
similarly large strains and ensure the stability of the explicit solver.

The solver uses a simple constant-step central-differences formula for time-
marching, as per initial work on TLED [9]. The standard termination criterion
for explicit dynamic simulations, based on the balance between internal, external
and inertial work was circumvented here. A simpler criterion, based on the root-
mean-square error to an already known solution has been utilized. This method,
however, still necessitates a manual check as the current solution might pass
through the correct configuration during the solution phase, especially given the
dynamic nature of the solver and the selected sample problem. All runs present
in this study are performed in double-precision floating point accuracy and use
a time step of 5E-6 s. Load is imposed using a smooth loading curve in the total
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time duration of 0.01 s. Damping is implemented as per [17, 4] with a damping
parameter (convergence rate) of 0.999.

In a first phase, results were obtained for purposes of testing the accuracy of
our implementation. To this end, the aforementioned boundary value problems
were also run in the implicit solver FEAP v8.2.k, using fully integrated elements,
such that the final displacements could be compared.

The PC hardware used in this research contains an i7-4790K @4GHz, 16Gb
of RAM and an Nvidia GTX980 GPU, built upon the Maxwell architecture.
Both FEAP and the CUDA code are run on the same machine.

Material μ[MPa] K[MPa] k1[MPa] k2[-] κ φ(deg)

neo-Hookean 0.010 10 - - - -
GHO layer 1 0.044 44 10.1 0.0 0.25 40.5
GHO layer 2 0.028 28 0.81 12.4 0.18 39.1
GHO layer 3 0.010 10 0.38 3.35 0.11 40.6

Table 1. Material properties for neo-Hookean model, and the GHO model in three
discrete layers.

Fig. 1. Initial and final geometry of a test cylinder, using locked (top and bottom
planes fixed in all degrees of freedom) boundary conditions, under-integrated elements
and a neo-Hookean material model.

3 Results

Accuracy is measured by computing the absolute(RMS) and relative root-mean-
square(RRMS) values between the ground-truth FEAP solutions and our solver.
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As previously mentioned, the termination of CUDA simulations at a certain
step was determined manually, at the point where the RMS error is constant.
Accuracy, timings and termination steps are shown in Table 2.

Comparative speed tests were performed on the set of CUDA results only.
Due to large amount of data output for post-processing, timing was separated
into pure computational time performed by the solver and the total wall-clock
time. Wall-clock includes both the solver and input/output (I/O) operations
(of user-controlled frequency) that include DRAM-RAM and RAM-HDD (Hard
Disk Drive) communication for post-processing. The solver run-time (GPU time)
therefore includes the aggregate durations of kernels stated in section 2.1, in-
cluding all communication and arithmetic operations pertaining only to GPU
internals and excludes all I/O operations. In-effect, GPU time measures only
the solver time, since the entirety of the core solver is ported to the GPU. This
time measurement was performed by an event-driven high-resolution clock ex-
posed to the user by the CUDA framework, and provided by the GPU hardware
(cudaEventElapsedTime(...)). All results in terms of speed are normalized to
the computation time of the fastest solution - the under-integrated neo-Hookean
(n-H) - and run for 150000 steps. Speed testing results are shown in Table 3.

Simulation RMS[mm] RRMS[-] Wall-clock[s] GPU time[s] FEAP Wall-clock[s]

n-H locked 3.19E-6 1.14E-5 17.3 12.6 102.73
n-H free 3.15E-6 1.00E-5 20.4 12.6 108.50
GHO locked 4.68E-6 2.36E-5 14.2 11.2 92.68
GHO free 5.51E-6 2.72E-5 13.5 10.3 103.03

Table 2. Accuracy verification for the neo-Hookean (n-H, run for 1.5E5 steps) and
GHO (run for 1.0E5 steps) material models using full integration. Root mean square
and relative root mean square for accuracy verification, timings for general comparison.

Simulation Wall-clock[s] GPU time[s] Speed

neo-Hooke UI 7.28 2.85 1.000
neo-Hooke FI 20.40 12.60 4.421
neo-Hooke SRI 18.16 13.44 4.715
GHO UI 7.59 3.15 1.105
GHO FI 20.08 15.32 5.375
GHO SRI 20.04 16.07 5.638

Table 3. Execution speed comparison between different integration routines, relative
to the fastest solution, that of the under-integrated element with the neo-Hookean
material model.
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4 Discussion & future work

The accuracy results presented in Table 2 demonstrate the correctness of the
implementation. The measured accuracy is at its realistic limit, given that FEAP
outputs five significant digits by default. Note that these measurements were
performed only between fully integrated elements in the two solvers since FEAP
does not have an under-integrated or selectively-reduced integration element.
Comparison between elements of different integration schemes would not result
in accurate comparison of solvers, rather in the testing of element formulations.

The only difference between the presented material models is in the response
of the two fiber families, i.e. in the anisotropy of the GHO material model. In
comparison to the base matrix material (serving as total material response in
neo-Hookean), the fiber response calculations are numerous. Additional memory
transactions and storage required for intermediate values associated with the
response of the fibers is substantial, exceeding those for neo-Hookean and sug-
gesting that execution speeds should be significantly slower. Interestingly, tests
for FI and SRI between the two materials show only a 10-21% increase relative to
UI, a result reflecting the complex, redundant and autonomous, execution and
memory management of the CUDA GPU. It also reflects the fact that, when
running in double precision, even the neo-Hookean material and the most basic
linear hexahedral element exceeds the available per-thread register memory of
the device, resulting in register spilling and heavy use of caching. For compar-
ison, a single precision solution for the UI neo-Hookean is approximately 1/4
(on the GTX980, [4]) that of the double precision solution time for a mesh of
similar size, and is the fastest solution if not for accuracy considerations. Note
that the presented mesh is not of sufficient density to induce maximal occu-
pancy of the device, as it was not considered pertinent to the current work’s
scope; larger meshes would invariably produce higher GPU-CPU speedups. The
above reference also shows results on a range of meshes, in conditions of under-
or full-utilization of the device.

Materials approaching incompressibility, nearly ubiquitous in soft tissue, have
a significant and adverse effect on the reduction of the critical time-step used
in simulations solved with explicit schemes. The GHO model is particularly
sensitive to the ratio of bulk to shear modulus, i.e. the Poisson’s ratio, as it has
to be set high to keep the deformation nearly isochoric, particularly important
in anisotropic material models. This sensitivity is much higher in such models
than for the isotropic neo-Hookean (ref. [18, 19]). Future work should be aimed
at an implementation of the mixed-element formulations using assumed strain
stabilization and an improved termination criterion based on energy balance.
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Abstract   Finite element (FE) analysis is an important computational tool in bio-
mechanics. However, its adoption into clinical practice has been hampered by its 
computational complexity and required high technical competences for clinicians. 
In this paper we propose a supervised learning approach to predict the outcome of 
the FE analysis. We demonstrate our approach on clinical CT and X-ray femur 
images for FE predictions (FEP), with features extracted, respectively, from a sta-
tistical shape model and from 2D-based morphometric and density information. 
Using leave-one-out experiments and sensitivity analysis, comprising a database 
of 89 clinical cases, our method is capable of predicting the distribution of stress 
values for a walking loading condition with an average correlation coefficient of 
0.984 and 0.976, for CT and X-ray images, respectively. These findings suggest 
that supervised learning approaches have the potential to leverage the clinical in-
tegration of mechanical simulations for the treatment of musculoskeletal condi-
tions. 

Keywords Finite Element Analysis, Biomechanics, Statistical Shape Modeling, 
Machine Learning, Femur 

Introduction 

Osteoporosis is a very frequent disease that affects the life of many people after 
the age of 50. Osteoporosis causes annually more than 2.3 million fractures in Eu-
rope and in the USA. In 2002, it was reported that in England and Wales, the oste-
oporosis related fractures cost £942 million annually and this value would increase 
with the ageing of the population in the western countries [1]. An accurate estima-
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tion of bone strength and fracture risk can help the diagnosis of osteoporosis, lead-
ing to an improvement of patient’s quality of life and reduced associated 
healthcare costs.  

Dual energy X-ray absorptiometry (DEXA) scan is the standard clinical diagnos-
tics tool to evaluate the level of osteoporosis and the related risk of fracture. A T-
score smaller than or equal to -2.5 of femoral neck or lumbar spine indicates oste-
oporosis. T-score is the number of standard deviations (STD) that bone mineral 
density deviates from the average of bone mineral density (BMD), measured in a 
healthy 30 year old population with the same gender and ethnicity as the patient 
[1]. 

To automate the diagnosis of osteoporosis from DEXA images, Whitmarsh and 
colleagues used statistical shape and appearance models. They proposed a Fisher 
Linear Discriminant Analysis (FLDA) method to classify bones having a high or 
low fracture risk [2]. Sarkalkan and colleagues proposed 2D finite element models 
built from DEXA images to predict the fracture risk of the proximal femur [3].  

It has been shown that 3D (FE) analyses predict bone strength more accurately 
than clinical methods such as DEXA [4]. However, the adoption of FE analyses 
into clinical practice has been hampered by its computational complexity and re-
quired technical competences. To analyze the bone behavior under a certain load-
ing condition, an accurate segmentation of the bone is necessary, a valid finite el-
ement mesh must be generated, and appropriate boundary conditions need to be 
applied to the model. These preparation steps are followed by time-consuming 
calculations to determine the biomechanical behavior of the bone. All of these 
steps are time consuming and computationally demanding, which make the FE 
analysis less appealing for clinicians [5]. As a consequence, up to now, the FE 
analysis techniques did not reach the clinical workflow. Different research studies 
aimed to automate the segmentation [6] and finite element mesh creation [7,8], 
however to the best of our knowledge no method has been proposed to bypass the 
computational complexity of FE calculations. In this paper we aim at alleviating 
the aforementioned issues of FE analysis to promote their adoption into clinical 
practice. 

The two most important features describing bone biomechanics are shape and 
bone mineral density (BMD). Therefore, we hypothesize that machine-learning 
techniques can be used to predict the biomechanical properties of the bone using 
shape and density features extracted from clinical patient scans, as well as patient 
anthropometric information. To this end, we propose a supervised learning ap-
proach to predict the outcome of FE analysis. As feature predictors for bone shape 
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and density, we propose to characterize this information in a compact way by us-
ing statistical shape modeling of the anatomy [6]. In this way, we reduce the di-
mensionality of the feature space, which leverages the building process of the ma-
chine learning model, and moreover, allows us to exploit previous developments 
in statistical shape modeling (e.g. active shape models [9]). We demonstrate this 
by predicting bone stresses from clinical CT (FEP), where features are extracted 
from a statistical shape and statistical intensity model of the human femur and pa-
tient’s anthropometric information. As a second demonstration we present prelim-
inary results on a simplified scenario where FE femur biomechanics are predicted 
from 2D X-ray images. Morphometric and density information available in the 2D 
image was used as predictors. 

 In the next section we describe in detail how the prediction models are built, how 
features are defined and extracted, and one example scenario to demonstrate how 
the approach can be adapted for X-ray scans. In the Results section, the databases 
used for training and testing of the method are presented and the quality of the 
prediction is quantified. We conclude the paper by discussing the advantages and 
limitations of our proposed approach. 

 

Method 

In this section we explain the proposed method for finite element prediction, 
termed here FEP. We then follow by exemplifying how the proposed method can 
be employed for a different image modality, such as X-ray. 

Finite Element Prediction (FEP) Framework 

The main framework for FEP is summarized in Figure 1. Following the same 
scheme as in supervised learning, our approach has two stages.  

First, during the training stage, a statistical model of shape and intensity is created 
as in [10]. In short, an iterative mesh morphing method [11] is used to compute 
point correspondences for a dense volumetric mesh consisting of approximately 
190,000 nodes and 130,000 tetrahedral elements. Bone density for each node is 
then extracted from the original CT scans [10]. A principal component analysis 
(PCA) is then performed separately on shape and density information, yielding 
two separate models. As shown in Figure 1 (training phase) each bone can then be 
modeled through shape and density scores.  
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Figure 1: Schematic description of the FEP predictions. Using shape, density, and 
stress scores of training data, we learn a random forest regression model. In the test 
phase, the trained random forest predicts from anthropometric and SSM-based bone 
and density predictors, extracted for a new image, the parameters of the statistical 
stress model. 

As response variables, FE computations are used to calculate stress values on each 
node of the FE mesh. The FE analyses were performed with the commercial pack-
age Abaqus/Standard (Abaqus v6.12, SIMULIA, USA). Boundary conditions 
(BC) representing a walking situation were applied to the bone models. We chose 
the loadings of the joint configuration proposed in [12], where the node con-
straints are selected at the femoral head, the intercondylar femoral notch, and the 
lateral epicondyle of the femur. The force values were calculated based on the 
body weight. The calculated nodal stress values were used to build a statistical 
model of stress. 

A statistical model of the stress in the model was built. The scores of this model 
were used as output of the prediction algorithm. For the calculations, we consid-
ered only the top modes of shape, density and stress obtained from the statistical 
models. The number of modes included was based on the criterion to keep 98% of 
the variation that was in the dataset.  

Using the set of aforementioned predictors and response variables, a random-
forest model [13] was trained to work as the regressor. Random forests are being 
used for different classification and regression problems [14]. They are robust to 
noise and more importantly are able to predict the output even when some input 

118



information is missing. Besides, Random forests are naturally conceived to use na-
ture of different data, as here anthropometric, morphometric and BMD Infor-
mation is used.  

We note here that as the output of the prediction is the parameters of orthogonal 
vectors, it is possible to train one random forest regressor for each stress parame-
ter. As suggested in [13], one-third of features are selected for each node-split, and 
the maximum depth for the tree is selected based on a 10-fold cross validation.  

During the test phase, given a patient CT image of the anatomy, the feature extrac-
tion process consists of projecting the patient's anatomy into the shape space to re-
cover shape and density parameters [6,10]. Here is where current and advanced 
SSM-based technologies (e.g. active shape models, hierarchical shape models [6]) 
can be used to compute scores for shape and density information. For the sake of 
simplicity we relied our experiments on a leave-one-out scheme where these pa-
rameters are extracted during model building. We also included anthropometric 
features such as patient's age, gender, height, and weight in the input features. Fi-
nally, after feature extraction, FE predictions can be computed to yield stress 
scores, which are converted into stress values by simply drawing the correspond-
ing sample values from the statistical model of stresses. 

FEP for X-ray Images 

By employing statistical shape and density scores to represent the anatomy and 
predict bone biomechanics, it is possible to decouple the prediction model from 
the input image modality. In other words, bone shape and density scores act as a 
“bridge” connecting the image modalities used to capture bone shape and density 
information of the patient to the image modality (CT scan) used to characterize 
bone biomechanics. As an example of using FEP for a different image modality, 
we demonstrate in this paper the case of having X-ray images as the input image 
modality used to capture bone shape and density information. We then show how 
to connect this information to shape and density scores used by FEP to predict 
bone biomechanics. 

For the sake of simplicity, in this study we built synthetic X-ray scans by project-
ing the captured CT scans to two orthogonal planes. To characterize bone shape 
and density information, we used a set of simple yet effective feature descriptors. 
From two orthogonal X-ray images a total of 21 bone morphometric dimensions, 
as shown in Figure 2, are extracted by selecting a few landmarks from both views. 
To model bone density information, the histogram of pixel intensities is calculated 
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for the frontal view, generating a feature vector of size equal to the number of his-
togram bins.  

From the triplets of 1) X-ray derived features, 2) patient's anthropometric data and 
3) corresponding bone shape and density scores, a random forest regression model 
is built. During testing, a new set of previously unseen X-ray orthogonal images is 
used to extract morphometric and bone density features to predict the bone shape 
and density scores. By cascading this model with the stress prediction model, de-
scribed in the previous section, we are able to perform bone biomechanics FEP 
from X-ray images. 

 

Figure 2: The morphometric feature descriptors extracted from two orthogonal views. 
Diameters (in green), distances (in white) and angles (in red) are shown for frontal 
and lateral views. By selecting three landmarks for each circle fitting and two for each 
line we perform the measurements. 

Results 

In this section we show the results of the proposed method for fast FE predictions. 
First the database and tools used for the study are explained. It is followed by the 
results of FEP method for CT and X-Ray scans. Database and Tools 

The database used in this study consists of 89 left femurs CT images. The resolu-
tion of CT scans was between 0.61 mm × 0.61 mm and 1.171 mm × 1.171 mm, 
with a slice thickness of 1 mm. The CT scans were acquired from 48 female and 
41 male donors with average age, height, and weight of, respectively, 60.7 ± 16.2 
years old, 165.70 ± 7.2 cm and 70.1 ± 13.9 kg. Table 1 reports statistics about pa-
tients and femur morphometric in our database. 
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Table 1: The statistics of the bones used in the database (n=89) 
 Patients Morphological parameters 

 Age Height (cm) Weight (kg) Length (cm) Anterior curve diameter 
(cm) 

Min 23 150 42 37.8 57.0 

Max 90 180 140 50.9 297.2 

Mean 60.7 165.70 70.1 44.5 123.4 

STD 16.2 7.2 13.9 23.2 33.4 

 

To study the accuracy of FEP, we used Leave-One-Out (LOO) [15] methodology 
to train with the maximum number of samples. The method was tested for one 
sample in the database when the rest of samples were used for training. This ap-
proach was repeated until every sample in the set was tested, which resulted in 89 
different sets of training and testing samples. 

For each training set, we built statistical models of shape, and density [10], fol-
lowed by FE computations. In the calculations, we considered the top modes of 
shape, density and stress statistical models with the sum of more than 98% of the 
variation in the dataset. As a result, 20 modes of shape and 46 modes of BMD 
were used for predicting the parameters of 16 modes of statistical model of stress. 
To tune the parameters of random forest, we performed a 10-fold cross validation 
using the scikit-learn toolbox [16]. 

Results of FEP for CT Scans 

We evaluated the prediction accuracy of stress values for each test sample. We 
calculated the correlation coefficient between the ground-truth stress values for 
each mesh node (as generated by the FE computations, using Abaqus FE solver in 
the normal walking loading situation), and the predicted Mises stress for those 
nodes. The average correlation coefficient for 89 test cases was 0.984 with a 
standard deviation of 0.008, showing the high accuracy of the proposed method. 

We further evaluated the prediction performance by calculating the prediction er-
ror as the difference between ground-truth and predicted stress values. The 
ground-truth stress values, the predicted values, and the error distribution are 
shown in  
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Figure 3 for the best and the worst results. Among 89 samples, the best result was 
achieved with an average error (and standard deviation) of 0.058 (0.898) MPa in 
the mesh. For the worst case, the average error (and standard deviation) of the 
predicted stress values was equal to 1.316 (7.822) MPa. After examination of the 
worst-case result, we found that it corresponds to a patient with a body weight of 
140 Kg, while the maximum weight seen in training dataset was only 110 Kg. 
This can be improved by using more samples for training to cover a larger variety 
of the population.  

To evaluate FEP for different regions of interest, we also examined its accuracy in 
the femoral neck, femoral trochanter and the femoral shaft, separately (see  

Figure 4).  The prediction error of stress for the neck region, which is the region of 
interest in fracture risk assessment, was smaller than 0.9 MPa in average. 

 

Figure 3: The stress map predicted by FEP model for the best and the worst cases. 
From top to bottom: the stress map calculated using FE calculations (ground-truth), 
the predicted stress values for the corresponding bones, the error distribution for 
these bones. The best result is achieved for the bone on the left column with a correla-
tion coefficient of 0.994, and the worst prediction result in the database is in the right 
column with a correlation coefficient of 0.939. In absolute error distribution plots, we 
zoom in on the range of [-10, 10] MPa for better visibility. The frequency of error be-
yond this range is negligible (0.0003 and 0.0122, for the best and the worst case). 
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Results of FEP for X-ray Images 

Based on features extracted from X-ray images we predicted the parameters of sta-
tistical shape and density models. We then used these parameters as input to our 
FEP. The average (standard deviation) correlation coefficient between the predict-
ed stress using this method and the ground-truth values was 0.976 (0.012).  

We developed a test case to evaluate the benefit of cascading two learning blocks 
(from X-ray to 3D data, and from 3D data to stress parameters) as compared to a 
single learning model that directly predict stresses from X-ray based features. 
Similarly to the other models, the depth of trees is determined based on cross-
validation on training data. In this case the average correlation coefficient values 
dropped from 0.976 ± 0.012 to 0.956 ± 0.286. This shows that the cascading of 
two regression models, as proposed herein, does not significantly alter the accura-
cy of the prediction as compared to a single learning model. In addition, the cas-
cading scheme has the extra value that other modality-specific models can be easi-
ly combined to FEP. 

 
Figure 4: The absolute error of FEP for different parts of the bone, (top) in average, 
(bottom-left) best case and (bottom-right) for worst case. The different regions of in-
terest are shown on the bone with different colors. Red: neck, blue: trochanter region 
and orange: shaft.  
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Conclusion and Discussion 

It has been shown that using 3D FE analyses improves the osteoporosis diagnosis 
[4]. However clinical adoption of FE analysis in bone biomechanics and fracture 
risk assessment has been hampered by its computational complexity and required 
technical competences [5]. In this paper we developed a random-forest based re-
gression framework to predict the results of the Finite Element Prediction, termed 
here FEP, by simply selecting a couple of landmarks on clinical images. We pro-
posed to use shape and density statistical model parameters to produce a compact 
and predictive set of features. In addition, the approach allows other image modal-
ities to be used for prediction, and enables the incorporation of other emerging 
technologies developed for statistical shape modeling. 

Using leave-one-out experiments, comprising a database of 89 clinical cases, our 
method is capable of predicting the stress values for a walking loading condition 
with an average correlation coefficient of 0.984 and 0.976, for CT and X-ray im-
ages, respectively. These findings suggest that supervised learning approaches 
have the potential to leverage the clinical integration of mechanical simulations 
for the treatment of musculoskeletal conditions. 

Motivated by the observed connections between the importance values obtained 
by random forest and actual models for shape, we analyzed the most important 
features in predicting the parameters of the stress statistical model. To predict the 
stress parameters, the body weight was found to be the most important parameter. 
This can be explained by the fact that in our experiments all bones were loaded in 
the walking situation when forces are scaled proportional to the body weight. 
Hence, the weight directly affects the stress values. 

We note that our motivation is to demonstrate that even with rather simple, yet de-
scriptive, selected features it is possible to yield a good level of prediction for 
bone biomechanics in real-time. In this work we used simple feature predictors for 
X-ray images. However, as proposed by the state-of-the-art approaches [17] three-
dimensional bone shape and density parameters can be estimated robustly and ac-
curately from X-ray images, which can further increase the predictive power of 
FEP. 

Our method predicts the output stress values of an elastic material model for FE 
analysis from density and shape. However, it is flexible and can be easily adapted 
to incorporate more advanced mechanical parameters for predicting the bone frac-
ture. For further improvement of FEP, we are planning to use existing methods on 
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predicting trabecular bone structure from CT scans [18–20] to improve the estima-
tion of biomechanical behavior of the bone. 

This study has some limitations. First, the estimation of the scores of shape and 
density from CT scans was obtained using mesh registration. This registration task 
is time consuming and should be replaced by more effective methods such as ac-
tive appearance model.  However, this intermediate step is not necessary when the 
stress predictions are obtained from X-ray images. Another limitation results from 
the choice of synthetic images to mimic patients’ x-ray images. This approach has 
been chosen to establish the method and avoid uncontrolled source of error. Clear-
ly the accuracy of the predictions will decrease when clinical data will be used. 
Further studies will investigate this effect, but the high correlations reported in this 
study indicate that the prediction from clinical x-ray will provide accurate stress 
estimations. Finally, we observed that the method is not as successful in predicting 
the stress values for a bone of a patient who has the highest weight in our dataset. 
This problem occurs because no other patient with a similar body weight exists in 
our dataset. Similar to all other techniques that rely on machine learning, a large 
database that samples the population more evenly helps tackling this issue. 

Our proposed approach followed by further improvements (adding trabecular bone 
structure to the analyses and using active shape modeling) shows a promising path 
towards real-time biomechanical analysis of bones in different patient-specific 
studies and brings an automated FE analysis to clinics. Since it is fast (the stress 
values are calculated in less then one second), several loading cases can be ana-
lyzed to have a better understanding of the patient's bone, moreover it can be used 
to find the bone strength and fracture risk for each individual patient. 

The drawback of FEP is that for each loading case, i.e. walking, stance, side fall, 
one different model has to be trained. Note that this process is done offline during 
the training phase. The testing phase is fast and the stress values can be calculated 
in less than a second.  
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Abstract Many bio-medical simulations involve structures of compli-
cated shape. Frequently, the geometry information is given by radiological 
images. A particular challenge for model discretization in this context is 
generating appropriate computational meshes.
One efficient approach for Finite Element simulations avoiding meshing is 
the Composite Finite Element (CFE) approach that has been developed 
and implemented for image-based simulations during the past decade. 
In the present paper, we provide an overview of previous own work in 
this field, summarizing the method and showing selected applications: 
simulation of radio-frequency ablation including vaporization, simulation 
of elastic deformation of trabecular bone, and numerical homogenization 
of material properties for the latter.

1 Introduction

In the past decades mathematical modeling, simulation, and optimization have
become indispensable tools in systems biology, systems medicine, as well as med-
ical diagnosis and treatment-planning. In the ‘image based computing’ paradigm,
radiological images like CT, MRI, ultrasound, etc. are analyzed to yield segmented
structures of organs, tissue, or other structures pictured. The consequent goal
is to simulate physiological processes, or to simulate and optimize treatments
using mathematical models and their numerical implementations. A particular
challenge in this is, however, the generation of computational meshes from the
segmented imaging data that is needed in the process of discretization of models.

In fact, structures in organisms have a complicated geometry. They are in
general irregularly shaped and show large intra- and inter-individual variations.
Moreover, it is often necessary to also resolve internal sub-structures or interfaces
with a computational mesh, thus to account for various bio-physical properties of
the many tissue-types that might be involved and which may be discontinuous at
the internal tissue interfaces. These facts make mesh generation for image based
computing a difficult task that, moreover, must respect constraints of a clinical
workflow in case of a true medical application in daily routine.

For the discretization of mathematical models that are characterized by partial
differential equations (PDEs) computational meshes are directly related to the
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Finite Element spaces spanning the space of solutions. In the case of irregular
boundaries or internal structures, it is known that the solutions have less regularity
that may result, e.g., in kinks and discontinuous gradients. The straightforward
approach to tackle these irregularities is mesh adaptivity, i.e., decreasing the size of
the mesh’s cells in areas with lower regularity of the solution and thus adapting the
associated Finite Element spaces. Other approaches avoiding mesh adaptivity that
have been discussed in the literature include generalized FEM (GFEM), extended
FEM (XFEM), Immersed FEM, Fictitious Domain Methods, WEB-Splines, and
others. We refer to [19,21,26] for literature overviews and [4,7,8,13,17,18,25] for
selected more recent approaches.

In this paper we review the Composite Finite Element (CFE) approach to
image based computing. The CFE approach goes back to [10,24]. This paper is
a summary of our work from the past decade orginally published in [19,21–23,
26–30,35]. The method works efficiently on regular hexahedral grids as they are
provided by the usual three-dimensional voxel grids of medical images. Still it
allows for the resolution of complicated geometries and interfaces by automatically
adapting standard linear Finite Element basis functions and thus modifying the
corresponding Finite Element space accordingly. In the remainder of the paper we
first explain the general idea of CFE in more detail in Section 2 and an approach
for numerical homogenization in Section 3. Then, in Section 4, we show two
applications from the field of medical image computing that demonstrate the use
of CFE: the simulation of radio-frequency ablation, the simulation of the elastic
deformation of vertebral trabecular bone, and numerical homogenization for the
latter. We close the paper with a summary and conclusions in Section 5.

2 Composite Finite Elements

We will describe the concept of CFE for the domain Ω = (0, 1)3, which is be
discretized with a regular hexahedral grid G that has 23l elements of grid width
h = 2−l and a total of (2l + 1)3 nodes. We choose to work with the unit cube here
as it eases the presentation. The application of CFE to other cuboid domains is
of course possible straightforwardly. Working with piecewise affine-linear basis
functions, we subdivide each hexahedron in six tetrahedra in such a way that
edges are consistent with neighboring elements, resulting in the mesh G� denoted
as the regular tetrahedral mesh.

We assume that the domain Ω contains Ωi ⊂ Ω, the object we are interested
in, and which has a complicated boundary. Consequently the solution to an
elliptic (or parabolic) PDE will be supported on Ωi and we will build a Finite
Element space whose basis functions are supported on Ωi. If in addition the
object comprises complex interfaces between materials of different bio-physical
properties the solution to the PDE will have kinks at the interface. Such kinks
result from discontinuities of material properties when they have different values
on both sides of the interface. The material properties enter the equations as
coefficients (e.g., as diffusivities or elasticity parameters) and the kink in the
solution will depend on the ratio of the material property across the interface.
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Again, in CFE we will build basis functions that are able to interpolate functions
fulfilling the kink condition. This approach to complex object boundaries and
interfaces makes classical grid adaptivity obsolete.

To proceed let us assume that Ω = Ωi ∪ Ωe and further Ωi = Ω+ ∪ Ω−
where Ω± are disjoint sets. Thus, the domain Ω is decomposed into the object
Ωi and its exterior Ωe. The object Ωi contains two material domains Ω±. A
generalization to more objects and more materials is of course easily possible [27].
In image based computing it is convenient to define these domains from 3D image
data that is provided on a regular hexahedral voxel grid. With image processing
methodology level-set functions can be provided such that the zero level-sets
define the interfaces of the domains, see below.

In the following we will describe how to construct CFE for complicated
domains, for complicated interfaces between different materials, and how to use
CFE in the context of homogenization. Note that our expositions will be brief
and just explaining the principal concepts. For more details we refer the reader
to the original publications that mentioned the respective sections below.

The treatment of different cases of boundary conditions (Dirichlet and Neu-
mann; on the bounding box and on the interface; zero and nonzero) is addressed
in [27]. A key advantage of the underlying uniform hexahedral grids is their
natural hierarchy of coarse scales. These were used in a CFE multigrid solver for
the case of complicated domains [19]. Defining a suitable coarsening scheme for
CFE for discontinuous coefficients turned out to be challenging [21] and requires
further investigation. One possibility could be a hybrid approach combining
standard geometric, algebraic [33], and topological [6] coarsening.

2.1 CFE for Complicated Domains

Let us first consider the case of a domain with complicated boundary consisting
of only a single material, w.l.o.g. described by Ω+ = ∅ and Ωi = Ω−. The interior
boundary is then given as Γ = ∂Ωi ∩ Ω. Let ϕ : Ω → IR be the level-set function
defining this domain, i.e., a function whose zero sub-levelset is Ω−.

In this case, CFE basis functions are constructed to be standard affine FE basis
functions restricted to Ωi as shown in Fig. 1 for the 2D case. This construction is
achieved by introducing an auxiliary mesh G�. For this purpose, tetrahedra of
G� intersected by the interior boundary Γ are further subdivided in four or six
sub-tetrahedra such that the a linear approximation to the boundary Γ is resolved.
In fact, the auxiliary nodes n�

i needed for the construction of the auxiliary mesh
are computed as the zero crossings of the affine-linear interpolation of ϕ on the
edges of G� that are intersected by Ω. From the standard, piecewise affine basis
functions G�, CFE basis functions are composed as a weighted sum, where the
weights are given by the barycentric coordinates of the auxiliary nodes n� on

i

the respective edges of G�.
For a detailed discussion of the CFE construction including the description

of a multigrid solver, we refer to [19,26].

130



Figure 1. 2D CFE Basis Func-
tions for Complicated Domains.
For the domain (left, light blue re-
gion), CFE basis functions in the in-
terior are standard piecewise affine
tent functions for the nodes of the
regular tetrahedral mesh G�. For the
exterior (right, white region), there
are no degrees of freedom and no ba-
sis functions. Near the interface (red
line), standard tent functions are re-
stricted to the interior of the domain.
This applies to the nodes of G� adja-
cent to the intersection of the inter-
face. (Figure from [26, Fig. 3.11])

Figure 2. 2D CFE Basis Functions for
Complicated Interfaces. For piecewise con-
stant coefficients in two domains (light blue
and yellow regions) with a discontinuity across
the interface (red line), CFE basis functions
far from the interface are again standard piece-
wise affine tent functions for the nodes of the
regular tetrahedral mesh G�. At the interface,
CFE basis functions are constructed in such
a way that they can interpolate the local kink
condition, in this case for isotropic scalar coef-
ficients with a ratio of 1 :10. These CFE basis
functions at the interface may attain values
outside [0, 1] and may have extended support.
Still, they form a partition of unity and their
support remains local and bounded. (Figure
from [26, Fig. 3.12])

2.2 CFE for Discontinuous Coefficients

For the case of discontinuous coefficients, let us assume that Ω = Ωi, i.e., there
is no additional complicated domain boundary. In this case, let Γ = ∂Ω+ ∩ ∂Ω−,
i.e., the interface between the two different materials, and let again ϕ : Ω → IR
be the function defining this interface, i.e., ϕ is positive/negative in Ω± and Γ is
its zero levelset.

In this case, CFE basis functions are constructed such that they are capable
of interpolating functions satisfying the kink condition due to the parameter
discontinuity (denoted below as ‘admissible’ functions). The construction starts
similar to the case above, introducing G� which now approximates the interface
between two material domains. Next, composition weights need to be determined
to to obtain CFE basis functions as weighted sums of standard, piecewise affine
basis functions G�. For this purpose, we consider the problem of locally inter-
polating admissible functions at nodes n�

i of the auxiliary mesh G� from nodes
n�

j of G�. The admissibility condition (= kink condition) involves the local
interface geometry, the underlying PDE, and the values of its coefficients on
both sides of the interface. Using a Taylor expansion, known properties can be
exploited, namely continuity of (a) the function, of (b) its derivative in tangential
directions, and of (c) coefficient times derivative in normal direction of the
function. Averaging over all adjacent tetrahedra of G� provides the interpolation
weight wi,j for the pair

(
n�

i , n�
j

)
. In turn, wi,j is finally used as the composition
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weight with which the auxiliary basis function for n�
i of G� contributes to the

CFE basis function for n�
j of G�.

For diffusion as a scalar model problem, a 2D example is shown in Fig. 2. The
resulting basis functions remain a partition of unity and retain boundedness of
their supports. However, they may attain values below 0 (see Fig. 2) or greater
than 1 near the interface.

In case of vector-valued elasticity with discontinuous material parameters,
the construction is more technical as the coupling condition at the interface then
involves three dimensions simultaneously. For nodes near the interface, this leads
to three CFE basis functions, each of which has contributions in all three space
dimensions. For a more detailed description of the construction for the scalar
and vector-valued model problems, we refer to [21,26].

3 Numerical Homogenization with CFE

Being specifically designed for simulations on cuboid domains, CFE are well suited
for numerical homogenization, i.e., for determining effective macroscopic material
parameters. An approach for numerical homogenization for linear elasticity of
trabecular bone specimens was presented in [23], other approaches include [9,14].
The basic idea of our approach [23] is to simulate six cases of uniaxial com-
pression and shearing (‘macroscopic unit strains’) and determine the respective
stress response of a statistically representative cubic part of the trabecular bone.
Together, this provides the necessary information for the macroscopic linear
elasticity tensor.

3.1 Simulations on Representative Volume Elements.

In case of microstuctures with exact geometric periodicity, the ‘cell problem’
approach cf. [2, Chapter 1] could be applied. Here, one fundamental cell of the
microstructure can be used as the computational domain, and the deformation
due to macroscopic unit strains can be determined using periodic boundary
conditions. The stress response can then be evaluated by integration over the
entire fundamental cell.

As biological structures like, e.g., trabecular bone, do not have an exactly
periodic geometric structure, there is no geometrically fundamental cell of the
object on which to impose periodic boundary conditions. Thus, we modify the
‘cell problem’ approach and use a statistically representative part of the structure
as the computational domain, which we call representative volume element or
RVE [15]. For simplicity, the RVE is assumed to be cube-shaped. Macroscopic
unit strains are imposed by corresponding Dirichlet boundary conditions on
the entire outer boundary of the RVE. Evaluating the stress response is then
restricted to an inner part of the RVE sufficiently far from the outer boundary.
This is necessary to avoid artificial stiffening due to boundary effects [21, Fig. 7.3].
A suitable thickness for the boundary layer omitted for the stress evaluation
turned out to be [21, Section 7.2] approximately one eighth of the edge length of
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the RVE. Based on [11, 34], the size of the interior used for stress evaluation was
chosen to be at least 5 times the intertrabecular distance (pore size).

3.2 Macroscopic Linear Elasticity Tensors.

From the approach described above, the stress response for each unit strain is
obtained, providing all parameters of the macroscopic elasticity tensor, i.e., the
effective elasticity tensor.

For these, the question arises whether they are approximately orthotropic,
and if so, what is the orientation of the axes. For this purpose, we solve an
optimization problem, finding the rotation of the coordinate system for which
the deviation of the tensor from an orthotropic one is minimized. The objective
function representing this deviation is obtained from the tensor written in Voigt’s
notation where orthotropy is observed by certain entries being zero. Again, we
refer the reader to [23] for more details on the approach.

4 Applications

In the following we will briefly describe some use cases for the CFE approaches
described so far.

4.1 Vaporization during Radio-Frequency Ablation

As a first application reported in [20], we consider a simulation of radio-frequency
ablation (RFA). RFA is a minimally invasive technique for the treatment of
lesions, e.g., liver cancer [3, 16]. For RFA, a thin probe carrying electrodes is
placed percutaneously inside the tumor and connected to an electric generator.
Due to the electric resistance of the tissue, heat develops and destroys proteins
and thus cells. When the temperature exceeds 100◦C, the water inside the tissue
vaporizes. This changes both the heat conductivity and the electric conductivity,
and thus the electric potential causing the heating.

To simulate the temperature evolution during RFA, we couple models for
electrostatic fields and temperature diffusion with a model for phase changes to
account for the water evaporization. Thus, we have a free boundary problem with
a complicated boundary that is coupled with discontinuous material coefficients
across this interface. In the following, we discretize this problem with the CFE
approach. In the notation introduced above, we consider the liquid phase to be
‘the object’ Ωi = Ωl and the gaseous phase to be ‘the exterior‘ Ωe = Ωg. Here
and in the following, indices l denote quantities in the liquid phase, whereas the
subscript g denotes quantities in the gaseous phase.

Phase Change. The phase change is modeled by a well-known Stefan problem [31]
that describes the discontinuity of the temperature gradient across an interface
between water in different phases, e.g., between liquid and vaporized water:

[−λ∇T · N ]
L

= ρl

(
vl − D

)
, (1)
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where λ is the the thermal conductivity, T the temperature, N the unit normal
to the interface pointing from the liquid to the vapor domain, L the latent heat
of the phase change, ρl the density of the liquid, vl the liquid vapor speed at
the interface and D the interface speed in normal direction. The jump operator
[A] := Ag − Al denotes the difference between quantities on the liquid and vapor
side of the interface. The Stefan condition allows to decouple the heat transfer
equations in the liquid and vapor phase. Thus, for the heat diffusion we end up
with the equations

ρgcg∂tT + ρgcgV · ∇T = −div(λg∇T ) + Qrf in Ωg × IR+,

ρlcl∂tT = −div(λl∇T ) + Qrf in Ωl × IR+,
(2)

with appropriate initial and boundary conditions and where Qrf is the heat source
according to the electric field caused by the RF current, see below. These equations,
with complicated shaped domain boundary on the liquid-vapor boundary are
discretized and solved using the CFE approach presented above. For details, we
refer to [20].

RFA Simulation. The second main component of the RFA simulation is the
solution of the electrostatic equation

−div(σ∇Φ) = 0 in Ω (3)

with appropriate boundary conditions. This equation provides the electric poten-
tial and thus the heat source Qrf = σ‖∇Ω‖2. Here, σ is the electric conductivity
that has a discontinuity at the interface separating liquid and gaseous domain.

Thus, for the overall RFA simulation, we need to solve (a) two heat transfer
equations on the vapor and liquid domains domains of complicated shape, one for
each phase, and (b) the potential equation for computing the electric potential
with a discontinuous coefficient on the interface between the two domains. The
evolution of the interface is obtained through the Stefan condition from above.

With this RFA model, we were able to calculate the expansion of a vapor
bubble around the probe (see Fig. 3). With our simulation we achieve results
comparable to measurements from ex situ experiments. Additionally, we com-
puted the impedance during ablation in our simulations and compared them to
measurements from [32, Fig. 7-1], see Fig. 4. Indeed, the characteristics of the
curves for numerical simulation and experiment coincide, i.e., the impedance
slightly decreases at the beginning; it rises steeply when the vapor bubble around
the applicator is established; and the impedance remains constant afterwards.

4.2 Elastic Deformation of Trabecular Bone

Vertebroplasty. As an application involving linear elasticity with discontinuous
coefficients, we consider an example from [21, 26], a specimen of a porcine
T1 vertebral body virtually embedded in Polymethylmethacrylate (PMMA)
subject to 1 % longitudinal compression. Material properties for the bone are
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Figure 3. Expansion of the va-
por phase around an RF probe.
Arrows, color coded by veloc-
ity, indicate the vector field that
drives the evolution of the inter-
face, i.e., the water bubble. (Im-
age from [20, Fig. 4.6], © SIAM)

Figure 4. Comparison of the
impedance measured during an
ablation (grey curve, experimen-
tal data from [32]) and com-
puted from the simulation (black
curve). (Figure adapted from [20,
Fig. 4.7])

undeformed deformed ⊥ displacement von Mises stress
(×20) −7 7 · 10−5 0 0.15 GPa

Figure 5. Vertebroplasty. For a porcine trabecular bone specimen virtually embedded
in Polymethylmethacrylate (PMMA), compression was simulated. On a slice through
the center of the specimen, the displacements perpendicular to the slice are shown in
units relative to the specimen height. Moreover, the von Mises stress on that slice as
well as the bone/PMMA interface are visualized. These visualizations show the impact
of the parameter discontinuity across the interface of geometrically complicated shape.
(Figure adapted from [26, Fig. 7.28] and [21, Fig. 6.5])
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Figure 6. Comparison of Effective Elasticity Tensors. The four images in the
top row show specimens from a human T12, from an osteoporotic human T10, a porcine
T1 and a bovine L1 vertebra along with the effective elasticity tensors obtained by
our numerical homogenization procedure (images adapted from [26, Fig. 7.36]). The
overall stiffness matches the visual impression of the bone density, and the stiffness is
largest in approximately the craniocaudal direction, corresponding to the vertical axis
in the specimens. The bottom left plot provides a comparison of longitudinal stiffness
and average stiffness in the transverse directions for multiple specimens of the species
above (adapted from [23, Fig. 2]). This shows a rather clear clustering in terms of both
absolute stiffness and ratio of longitudinal over transverse stiffness. The bottom right
image comprises the effective elasticity tensors obtained for different positions within an
entire human L4 vertebra (image adapted from [29, Fig. 6]), again showing craniocaudal
anisotropy and stiffness variations depending on the position.

assumed to be those for human vertebral bodies, E = 13 GPa and ν = 0.32 [36],
and E = 3 GPa and ν = 0.38 for PMMA as in [21]. With an isotropic image
resolution of 35 μm, the resulting computational mesh had 143 × 143 × 214 nodes.
Results of this simulation are shown in Fig. 5.

Effective Elasticity Tensors of Trabecular Bone in Different Species. As a second
application involving trabecular bone, we investigate differences in the macro-
scopic stiffness of specimens taken from vertebrae of different species [23]. For
this purpose, cubic specimens of edge length 5.16 mm were obtained from a young
male human, an osteoporotic female human, a porcine, and a bovine spine. The
values above, E = 13 GPa and ν = 0.32, were used as material properties for the
trabecular bone, this time viewed as a complicated domain without surrounding
medium. Using the numerical homogenization approach above, effective stiffness
tensors were obtained for each of the specimens, visualized in Fig. 6.
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Here, in order to give a quick visual impression of the macroscopic elasticity
properties, we use the visualization presented in [5, 12]: A sphere is deformed
according to the compressive stiffness in different directions, and it is rendered
colored according to the respective bulk modulus, resulting in the colored ‘peanuts’
shown in Fig. 6.

Plotting the longitudinal and the average transverse stiffness for all specimens,
a clear clustering of the different species can be observed. In [29], intravertebral
variations were investigated further for multiple samples of an entire human
vertebra, also shown in Fig. 6.

A validation of the CFE elasticity simulation and the homogenization has
been discussed in [29]. There, local stiffness tensors have been computed for
the trabecular core of a female human lumbar vertebra (58 y) which had been
scanned by CT. Figure 7 briefly summarizes the results in terms of a correlation
plot for measured and experimental apparent stiffness for various resolutions of
the image data that shows the trabecular bones. Our investigations show that
there is a moderate but acceptable agreement between experiment and numerical
homogenization.

Figure 7. Correlations
between experiment and
CFE homogenization. Cor-
relation lines for resolutions
below 168μm were statisti-
cally significant (p < 0.05).
Concordance coefficients rc

are given in the box for the
varying resolutions. Ideal
concordance would have been
given by a correlation straight
falling together with the black,
dashed line. (Image from
[29, Fig. 3])

5 Conclusions

We have discussed a Composite Finite Element approach to image based comput-
ing. The CFE method is capable of resolving complicated structures or interfaces
on hexahedral grids as they are provided by standard voxel grids of three dimen-
sional medical image data. In the paper we have presented possible use cases for
CFE, when the domain has a complicated boundary, when an interface between
different materials has complicated shape, or when the computation of efficient
macroscopic quantities, i.e., homogenization of complicated materials, is of in-
terest. In contrast to standard FE on hexahedral grids, approximate interfaces
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are resolved. Thus, a higher order of convergence by CFE is expected and was
verified in [20,21,27].

The method is based on a virtual sub-division of the hexahedral grids into
tetrahedra. The CFE discretization can be implemented efficiently and a multigrid
solver has been developed. The CFE implementation from [26] is open source
and available as part of the QuocMesh software library [1].

We have shown the application of the CFE discretization to the simulation
of radio frequency ablation in which the electric conductivity is discontinuous
across a moving interface that has complicated shape. Also we demonstrate the
homogenization approach for the elastic deformation of trabecular bone. As said
before, for more details we refer the reader to the original publications mentioned
above.

Acknowledgments. We acknowledge Martin Rumpf, Stefan Sauter, and Uwe
Wolfram for their collaboration and many fruitful and inspiring discussions
regarding CFE and their applications.
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Abstract. When the blood flow is considered as steady Poiseulle flow,
the governing Navier-Stokes equations can be reduced to the Hagen-
Poiseuille law. This simplification results in a substantially reduced com-
putational cost which is very useful in real-time blood flow simulations,
in particular for large vasculatures containing thousands of blood vessels.
By incorporating a convection equation we can also simulate transient
drug transportation in the vasculature. In this paper we present at first
the implementation of a real time flow solver which is coupled with a
complex arterial tree generated from the Constrained Constructive Op-
timization (CCO) algorithm. The computational time for ∼8,200 vessels
was 0.2s. Secondly, we simulate the transient drug transportation in the
vasculature. Thirdly, we model the delivery of the drug into a tiny tissue
block by adopting a 3D diffusion equation. In conclusion the presented
computational techniques constitute a pipeline for circulation modelling
in multiple scales, and may be used in a variety of biomedical applica-
tions.

Keywords: Flow solver, blood, real-time solver, drug delivery

1 Introduction

Modelling the blood flow in a cardio-vascular system remains as a popular re-
search topic due to its many clinical and physiological applications, and the com-
plexity in biomechanic and mathematical methods to solve it. Through computer
simulations we can investigate the blood flow in multiple spatial scales, from
macro (cm) to micro (μm) levels, and in multiple temporal scales, from seconds
to a much longer timeframe (e.g., months in case of chronic conditions) which are
otherwise difficult to observe in laboratory experiments or animal models. This
is particularly true if there are tiny vessels and control mechanisms involved.
Indeed numerous models have been proposed over the last several decades, often
coupled with in vivo or ex vivo experiments to validate the simulation results.

An investigation of the steady blood flow represents one of the modelling
strategies since it removes temporal dependencies from the blood pressure and
flow. In terms of computational cost, high efficiency can be achieved even for
a large vasculature containing thousands or more vessels. Previous work in this
area demonstrated real-time performance (in 50 milliseconds) for a vasculature of
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2,337 vessels [1], whereas the works solving the pulsatile flow in the time domain
(e.g., in [2]) and the frequency domain (e.g., in [3] and [4]) rarely reached more
than one thousand vessels.

We have several objectives in this study. Firstly we aim to implement a
real-time blood flow solver similar to that of [1] and then apply it to large vascu-
latures containing up to thousands of vessels ranging from small arteries (diame-
ter D=∼1mm) to arterioles (D=∼ 100μm) and further to capillaries (D=10μm).
Secondly, we aim to simulate the transient flow of a drug or a contrast agent
in that vasculature. Thirdly, we model the diffusion of the drug in a tiny tissue
block of 1mm, which can be used in future drug metabolism studies. All the al-
gorithms have been developed using MATLAB (Mathworks, Natick, MA, USA)
and the visualisation tool was CMGUI (http://www.cmiss.org/cmgui).

2 Method

2.1 A real-time steady flow solver

The classic Hagen-Poiseuille Law relates the pressure drop Δp to the flow rate q
for a laminar, incompressible and Newtonian flow in a long cylindrical pipe as:

q =
Δp

R
(1)

where R represents the vessel resistance and is computed as:

R =
8μL

πr4
(2)

where μ is the dynamic viscosity of the blood, L is the length of the vessel
and r its radius. In order to solve the steady flow in a large tree, the flow at
every branch is included in the flow rate vector Q of size M which is the number
of branches, and the pressure p in the vector P of size N which is the number of
nodes. Thus the Poiseuille Law was computed through a M × N matrix K, so
that Q = KP . Each line of K contains R(i) which corresponds to the resistance
of the branch i, and is multiplied by the pressure at the node ending the branch.

In order to solve the system, two boundary conditions need to be configured.
Firstly the pressure at the beginning of the root vessel and the pressure at the
end of terminal vessels. They were incorporated in the vector Pe and we created
a matrix Γ to associate their values to the corresponding terms of P : Pe = ΓP .
The second condition is similar to the Kirchhoffś first law which acts as an analog
to blood flow. This means that the sum of inflow arriving at a node is equal to
the sum of outflow leaving that node. The law was computed using a matrix ψ
so that ψP = 0. ψ is rather large due to the large number of internal nodes of
the tree and each line contains

∑
ΔP
R(i) corresponding to the sum of flow of all

branches leaving that node. The final equation is:

⎡
⎣ Q
Pe
0

⎤
⎦ =

⎡
⎣K ΓT ΨT

Γ 0 0
Ψ 0 0

⎤
⎦
⎡
⎣ P
λ1

λ2

⎤
⎦ (3)
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where λ1 and λ2 are Lagrange multipliers resulting from the boundary condi-
tions but treated as 1 in the actual implementation. In the first step the pressure
P is evaluated from boundary conditions and the Kirchhoff Law according to:

⎡
⎣ P
λ1

λ2

⎤
⎦ =

⎡
⎣K ΓT ΨT

Γ 0 0
Ψ 0 0

⎤
⎦
−1 ⎡

⎣ Q
Pe
0

⎤
⎦ (4)

The second step consist in using the matrix K in Q = KP . Name the first
matrix at the RHS of Equation (3) as H, the inversion of the matrix H in
Equation (4) is computationally expensive. However, since this step is performed
before the actual computation of Q, it is treated as a pre-processing step and is
not taken as the computational cost [1].

In order to check the computational time, we computed the steady flow
in symmetric binary trees of an increased number of vessels. The number of
branches in the tree was up to 8,191 vessels and 14 generations, as shown in Fig.
1. The desktop computer used had an Intel Xeon CPU @2.67GHz, and 4GB of
RAM. The computational time for these trees is shown in Table 1.

Fig. 1. Solve flow in a binary tree of 8,192 vessel in real-time (0.2s).

Table 1. Computational time for arterial trees.

Number of Vessels (n+1) 256 512 1,024 2,048 4,096 8,192

Time (ms) 0.5 1.6 5 16 56 206
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2.2 A transient flow solver

Assuming the blood flow is steady, the flow velocity u is evaluated by:

u =
Q

πr2
(5)

The resulted u is then applied to the advection equation:

∂C

∂t
+ u

∂C

∂x
= 0 (6)

where C is the concentration of a drug agent. The finite difference method
was used to solve the equation, which in turn requires a 1D mesh created for
each vessel. In order to reduce numerical diffusion the spatial step needs to be
sufficiently small albeit the computational time is higher. We used an implicit-
scheme which is an unconditionally stable scheme so that the constraints on the
time step can be loosened. The final scheme is:

Cn
i = Cn+1

i (1 + α)− αCn+1
i−1 (7)

where i denotes the position in space and n in time. α = uΔt
Δx is the Courant

number. With a different vessel length, Δx can be different and therefore α has
to be computed for each branch of the vasculature. Finally we have:

⎡
⎢⎢⎢⎢⎢⎢⎣

...

Cn
i

...

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + α
−α

· · ·
· · ·
−α 1 + α

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

...

Cn+1
i

...

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

As for the initial conditions, since a contrast agent is injected at the root
of the tree, and so a C0 can be configured for the root vessel. At bifurcations,
the concentration at the start (or proximal end) of the daughter branch is Cd =

Cm
r2d
2r2m

where the subscript m denotes mother vessel and d denotes the daughter

vessel.

2.3 CCO tree growing algorithm

Assuming that a vasculature grows according to the principle of energy min-
imisation, i.e., the vasculature uses the minimum energy to perfuse a tissue, an
optimization process namely Constraint Constructive Optimization (CCO) can
be used to generate the tree [5]. The core of this method is the minimization of a
target function, which is the total blood volume as [5] suggested. Mathematical
details of the algorithm can be found in [5] and [6]. In brief, the tree generation
algorithm is summarised as below:

1. Randomly generate a point within the perfusion volume;
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2. Search for the closest segment to the point;
3. Perform an optimization operation to create a bifurcation;
4. Check if all constraints are satisfied;
5. Generate a list of candidates which passed the test of Step 4;
6. Use the one candidate which has the smallest tree volume

With this algorithm we created arterial trees of different number of vessels
(100, 200, 2,000 and 4,000) as shown in Fig. 2. The steady and transient flow
solvers described in the above two sections were then applied to the trees.

Fig. 2. Arterial trees generated from the CCO algorithm. The number of vessels in the
tree are 100, 200, 2000 and 4000, respectively.

2.4 Tree growing algorithm under the Fahraeus-Lindqvist effect

When the blood reaches the scale of arteriole (from 8μm to 100μm), in order
to minimize the amount of energy required to move the blood, red blood cells
spontaneously migrate toward the center of the vessel. This increases the shear
rate and lowers the viscosity. Since the diameter of red blood cells is comparable
to the diameter of arteriole, the blood viscosity becomes dependant on the vessel
radius as well. This phenomenon is called Fahraeus-Lindqvist effect, which was
firstly reported in 1931 (for a recent account of this effect please refer to [7]).

The Fahraeus-Lindqvist effect was also implemented in the vessel tree grow-
ing algorithm. Specifically the following rule according to [6] was enforced:

μ(r) =
μ∞

(1 + δ/r)2
(9)

with μ∞=4.0cP, δ=4.29μm in the range r ∈ [4, 150]μm. Therefore this rule
relates the blood viscosity with the vessel radius.
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2.5 The 3D diffusion solver

While the tree generation algorithm can be applied to both macro- and micro-
scales, of particular interest is the tree generated for a tiny tissue block of 1mm
in size, where the terminal vessels reached the μm scale, i.e., the size of capil-
laries. At this spatial level the exchange of nutrients, oxygen and metabloishm
byproducts between the vascular network and the interstitial space need to be
considered, where diffusion is the major transportation mechanism. The tran-
sient diffusion equation in 3D can be expressed as [8, 9]:

∂c(r, t)

∂t
= D ·

(
∂2c(x, y, z, t)

∂x2
+

∂2c(x, y, z, t)

∂y2
+

∂2c(x, y, z, t)

∂z2

)
−k(x, y, z) (10)

where D = 1.0×10−9m2s−1 is the diffusion coefficient for oxygen [8], c(r, t)
is the transient concentration in the whole domain at location r and time t. k is
the consumption term describing drug uptake by cells in the tissue block.

In order to solve Equation (10), an explicit Euler scheme was used whereby
the spatial step was fixed (10μm), and the temporal step was chosen to obtain
a stable scheme for diffusion. Stability criterions are given by β = D∗Δt

Δx2 < 0.5,
which gives us Δt < 5.0 × 10−2s and therefore Δt = 1ms was chosen. The
computational time for a 3D grid of 100 × 100 × 100 (grid size 10μm) was 450
seconds for 1,000 iterations.

More details of the numeric scheme was introduced in [9] and we refer the
interested reader to that literature for reference.

3 Results

3.1 Real-time steady flow solving for an arterial tree

The steady flow solver was applied to arterial trees generated from the CCO
algorithm. The computations were run in real-time, as described in Table 1. Fig.
3 visualises the flow rate (ml/s) distribution in a tree of 512 branches. The blood
vessel radii in the tree range from 1mm at the root vessel to 10μm in terminal
vessels.

Due to the law of mass conservation, the flow rate at each generation was
identical to other generations. Therefore the flow rate gradually decreases as
the flow diverged in downstream generations. At the root vessel, the flow rate
is 1.35ml/s. Considering the radius r of the root vessel is 1mm, translated into
flow velocity this is equivalent to 44.6cm/s.

3.2 Drug convection in the tree

We assume that there was no leakage occurring in the tree before the terminal
capillary vessels. The flow velocities computed from the previous section were
used to simulate the evolution of a drug agent through the tree by setting u
values in Equation (6).
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Fig. 3. Real time flow solving in an arterial tree generated from the CCO algorithm

In the finite difference scheme introduced in Section 2.2, each vessel in the
tree was split into 4,000 nodes to solve the convection equation. Consequently the
computational time was much longer (∼1,000s for 512 vessels) than the steady
flow solver. For a better visualisation of the agent distribution in the tree, a
logarithmic scale was used, as shown in Fig. 4. The concentration of the agent
became lower while it progressed in the tree. This is understandable because the
total section area of the vasculature is increasing.

3.3 Diffusion from the tree

Fig. 5 shows drug concentration C in the tissue as a result of diffusion from the
micro-scale vasculature. In Fig. 5A a cut plane was used to show C at a cross-
section of the tissue block. It can be seen that C decreases while the distance from
the vessels increases. Fig. 5B shows an isosurface where the drug concentration
was identical on the surface.

4 Discussion & Conclusion

In this paper we presented a multiscale computational pipeline which contains a
real-time steady flow solver, a transient agent flow solver and a diffusion solver.
This pipeline was applied to a tree generated from the CCO algorithm and
different flow phenomena were simulated.

One of the applications of this pipeline is to model the hepatic vascula-
ture, where the large liver vessels (portal and hepatic veins) are digitised from
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Fig. 4. Transient flow of a contrast agent in the tree. No leakage was assumed before
terminals of the tree.

CT/MRI images, and the CCO algorithm can be used to generate small (<1mm)
vessels downstream the large vessels. The steady flow solver, introduced in Sec-
tion 2.1, is suitable for the venous flow as there are little blood pressure fluctu-
ations in these veins. The convection and diffusion algorithms may be applied
to the study of nutrient metabolism and drug detoxification, after incorporat-
ing some recently published models (e.g., that for acetaminophen hepatotoxicity
[10]).

It worths mentioning that the geometry of the arterial tree, including the
nodes and elements, was organised into a 1D finite element mesh. This approach
is different from the graph method described in [11]. When embedded in a 3D
finite element volume mesh the relative coordinates (or ξ coordinates) of the
vasculature can be evaluated dynamically and deformed in real-time. This con-
cept is also called host mesh fitting and has been described in other relevant
studies, e.g., for musculoskeletal modelling [12]. Its application for the vascular
network, illustrated in Fig. 6, is powerful in surgical simulations or computer
aided surgeries where organs are deformed due to surgical loads or breathing
effects.

There are some limitations pertaining to the current pipeline. Firstly the
diffusion process introduced in Section 2.3 was rather idealistic. For example,
the k term in Eq. (10) which accounts for the cellular uptake is artificial but
the actual perfusion process across cellular membranes is very complex. Also
the tissue was modelled as a homogeneous media which indeed should have
heterogeneous resistance to oxygen perfusion. Secondly the blood was simulated
as Newtonian i.e. with a constant viscosity which indeed should be a variable
corresponding to the shear rate, i.e.. as a shear thinning non-Newtonian fluid.
This assumption becomes more questionable in tiny vessels where the diameter
of red blood cells is close to the vessel lumen. Thirdly the coupling between the
different solvers is not implemented yet, in particular between the extra-cellular
and intra-cellular models.

149



Fig. 5. Concentration of a drug agent in a tissue block due to diffusion effects from
the micro-vasculature. A: Visualisation from a cut plane; B: Visualisation from the
evolution of the isosurface of drug concentration.

Fig. 6. Real time vasculature deformation based on the host-mesh fitting algorithm.

Nevertheless, the presented computational pipeline may be used in some
biomedical applications due to its computational efficiency and also the ability
to model drug transportation. Future work include the investigation of cellular
reactions and metabolism functions, and strong coupling of the solvers.
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Fundus image based blood flow simulation of the
retinal arteries

Andreas Kristen , Lachlan Kelsey , Erich Wintermantel , Barry Doyle

Abstract Computational fluid dynamic (CFD) simulations can help to understand

the hemodynamics of the retinal vascular network and the microcirculation. Sys-

temic diseases, like hypertension and diabetes change the geometry of the vascu-

lature in the retina and these changes can be seen with fundus photography. Fur-

thermore, these changes are indicators of cardiovascular diseases. The aim of this

study is to create a plane 2D model of the retinal arterial network based on a high-

resolution fundus photograph and to perform a CFD simulation. The blood vessels

were segmented from the image with the Frangi filter method. A structural fractal

tree were implemented to calculate the outflow boundary conditions representing

the peripheral vascular bed. With the Frangi filter method and the high-resolution

fundus image a comprehensive model of the visible retinal artery network could be

achieved. The simulation results show realistic velocity and pressure distributions

of the retinal blood flow in a healthy retina compared to in-vivo measurements in

the literature. This work is an initial step towards creating comprehensive patient-
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1 Introduction

The retina is effected by numerous systemic disease related to the vascular circula-

tion, like diabetes, hypertension and atherosclerosis, which are major health prob-

lems in modern society [8]. Several studies have shown that narrowing of retinal

arterioles and widening of the retinal veins indicate cardiovascular health risk in-

cluding coronary heart disease (CHD), hypertension and risk of stroke, even be-

fore clinical symptoms of the disease occur [13, 27]. Therefore, the eyes represent

a window into the cardiovascular health of a person. The retinal vasculature has

blood vessels with diameters less than 150 μm and includes the small resistance ar-

teries, arterioles, capillaries and venules in the microcirculation [26]. These make up

the largest part of the circulation system of a person, but it is still not possible to

examine this system non-invasively, except in the retina. Compared to large arter-

ies, vessels of the microcirculation have different rheological properties due to the

physiological and physical limit [6].

Therefore, it is necessary to understand the hemodynamics of the retinal vas-

culature and investigate the microcirculation system. Fundus photography is a

widespread and easy to perform imaging method to gain a view of the retinal blood

vessel network, consequently, the microcirculation of a person. A realistic model of

the retinal vascular network can improve the knowledge of the hemodynamics and

may help physicians to detect abnormalities earlier.

The aim of this work is to investigate the blood flow in the retina by computa-tional

modelling and a computational fluid dynamics (CFD) simulation. The data for the

model are obtained from a fundus photograph. In all visible branches of the plane 2D

retinal artery network the velocity and pressure distribution is examined.

2 Methods

For this work we used a high resolution fundus image from the free High-Resolution

Fundus (HRF) Image Database (Friedrich-Alexander Universitaet Erlangen-

Nuernberg)[4] of a healthy subject. The image of the retina were taken by an expert

with a CANON CF-60UVi camera and has a resolution of 3504x2336 pixels. The

vessels were segmented with the method described by Budai et al. [3] using the Frangi

al-gorithm [32] for ridge detection. Frangi filter method extracts tubular objects based

on measurements of the eigenvalues of the Hessian matrix. The Hessian matrix con-

tains the second-order derivatives in a local neighbourhood. Before applying the

Frangi filter, the RGB image was decomposed into the green channel, because this

offers the best illumination [3]. Then histogram stretching and homomorphic filter-
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ing were performed to normalise and increase the contrast as well the brightness and

remove noise. The Frangi algorithm were applied on the image with σ = 1,2...8, on

a rescaled image by the factor of 0.5 with σ = 1,2,3,4 and on a rescaled image

by the factor of 0.25 with σ = 1,2. The values were obtained from Frangi et al.

[32] with empirical gained adaption to get the best fitting results in relation of ves-

sel detection and noise. σ is the standard deviation of Gaussian to approximate the

second-order derivatives. The filter correction constants β1, β2 were set to 2 and

4. The images are converted to binary images by a threshold and rescaled back to

the original size. The final segmented blood vessels is the result of the original and

rescaled superimposed images. An increase in the value of σ increases the thick-

ness of the segmented vessels. Therefore, we used the superimposition of the orig-

inal image to guide our segmentation process to ensure the vessels remained true

to the original geometry. The original fundus image with the green channel and the

segmented vessels are shown in Fig. 1.

Fig. 1 a) The basis fundus image of a healthy subject taken from the High-Resolution Fundus
(HRF) Image Database [4] extracted to the green channel. b) Segmented blood vessels after apply-
ing Frangi filter algorithm.

Since the CFD simulation is performed on the artery tree, the segmented vessels

have to be divided into arteries and veins. There are reports in the literature and

active research trying to automatically classify arteries and veins, like from Konder-

mann et al. [12], but this is not the focus of this study. The classification was done

manually and the arteries were marked on the original image with red lines and the

veins with blue lines. A special written MATLAB (MathWorks, USA) script com-

pared the original image with the added lines and the segmented blood vessels to

generate a new binary image containing just the arteries or veins. The classification

into arteries and veins as well the segmentation showing only the artery network are

displayed in Fig 2.

With Mimics v18 (Materialise, Belgium) a mask was created of the binary file

shown in Fig. 2b, which was scaled into mm by using the standard optic disc di-

ameter assumed to be 1.85 mm [11, 10] and exported into 3-matic v10 (Materialise,

Belgium) afterwards. A smoothed geometry curve was generated to export the seg-

mented blood vessels as a STL or CAD file containing a plane surface. The geom-
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Fig. 2 a) Classification of the retinal blood vessel network into arteries marked red and veins
marked blue. b) Arteries divided from the segmented blood vessels.

etry could then be imported directly into ANSYS Workbench v15 (Ansys, USA) to

mesh the structure, define the boundary conditions and run the CFD simulation with

ANSYS Fluent v15.

For the mesh of the vessel structure, quadrilateral elements were used including

on each wall boundary inflation with 20 layers starting on the wall with a size of

0.5 μm and growing with a factor of 1.2 into the centre [1]. The mesh in the cen-

tre contains elements with a constant size of 2 μm. The final mesh had 2,551,978

elements. Fig. 4b shows an extract of the mesh.

The blood flow in the retinal arteries is assumed to be steady and governed by

the Navier-Stokes equation for incompressible fluid [14, 21, 2]

∇ ·V = 0

ρ(V ·∇)V =−∇p+μ∇2V (1)

where V is the velocity of the blood, p the pressure, ρ the blood density, and μ is

the dynamic viscosity of the blood. The vessel walls were assumed to be rigid [14]

and the density of the blood was set to 1055 kg/m3 [20]. Because the diameters of

the visible arteries are in the range of 15-120 μm and the complex characteristic of

blood, a non-Newtonian fluid model has to be considered. In our simulation we used

the standard non-Newtonian fluid model Carreau-Yasuda. The values for Carreau-

Yasuda were set to η0 = 2.5mPa.s, η∞ = 160mPa.s, λ = 8.2s, n = 0.2128, a =
1,23 adopted from Cho et al. [5] with additional reduce the η∞ to approximate the

viscosity by the model of Pries [22].

As some of the smaller vessels are not visible on the image or were not detected

by the segmentation, the unresolved peripheral vessels were modelled by generating

structural fractal trees [19, 28]. The same was applied for the vessels ending abruptly

on the edge of the fundus image due to the limitation of 2D planar photographs. The

outlet diameters in the image are in the range of 14-86 μm. All vessels terminating

with diameters larger or equal to 30 μm are connected to an asymmetric binary

structured tree, where at each bifurcation the radius of the two daughter vessels is
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scaled by factors α and β. The relationship across bifurcations between the radius

of the parent vessel rp and the two daughter vessels rd1, rd2 can be described by the

power law

rp = rd1
ξ + rd2

ξ (2)

and the asymmetry index γ

γ =
rd2

2

rd1
2

(3)

where ξ , the junction exponent, set to 3 [18] and γ to 0.62 and 0.41, respectively,

depending on the vessel radius [16, 33]. A schematic structured fractal tree can be

viewed in Fig. 3.

Fig. 3 a) An asymmetric binary fractual tree. b) Schematic structural fractal tree connected to the
trunk vessel.

To generate the vascular bed, the branches of a fractal tree terminates, when the

daughter vessel reaches a diameter below 30 μm and have an equal relative pressure

Pend of 0 mmHg [14]. The outflow boundary condition at each outlet is given by the

pressure drop

ΔP = P0−Pend = R0×Q0 (4)

where R0 is the total resistance of each fractal tree, Q0 the volumetric outflow

rate and P0 the outflow pressure at the outlet of the trunk arteries [20, 14]. The total

resistance of each fractal tree is calculated iteratively in recursive manner starting

from the terminal branch.

A constant velocity from the central retinal artery of 0.07 m/s [17] was assumed

as the inlet flow. The no-slip condition was used for the wall boundaries, where the

wall shear stress (WSS) at the wall interface is infinite and thus the velocity zero

[7]. The Navier-Stokes equation were solved numerically by the commercial finite

volume solver ANSYS Fluent.
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The visible arterial network has 2 inlets, where the central retinal artery (CRA)

enters the network in the optic disc and branches into the superior temporal and

inferior temporal arteriole [30]. The outflow occurs via 52 outlets (see Fig. 4). To

take account that the inlet flow of the CRA is divided into two arteries the velocity-

inlet boundary is set by the volume flow rate vCRA×ACRA = v1×A1 + v2×A2 with

v1 = v2 and A1 = A2. Resulting at each inlet a velocity of 0.037 m/s by using a mean

CRA diameter of 175 μm [9].

Fig. 4 a) Retinal arterial vessel network with 52 outlets represented by ’Oi’ and a split at the optic
disc for 2 inlets represented by ’Ii’. (Rotated through 180◦ compared to the raster image.) b) Extract
of the mesh.
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3 Results

The computing time of the simulation was 1.5 h until the solution converged to

residual values of 10−3 for continuity and x and y velocity. We performed the sim-

ulation using an Intel(R) Core(TM) i7 960 CPU 3.20 GHz personal computer with

12 GB RAM. Fig. 5 shows the blood flow velocity distribution in the retinal arterial

network. The velocity vectors at 3 bifurcations (junction J1, J2, J3) are displayed in

Fig. 6. At each bifurcation the flow rate as well the velocity of the blood is reduced.

At the ending branches after several bifurcations the blood flow reaches a nearly

zero velocity (1×10−5 m/s). Exceptions are vessels with less bifurcations leaving

the visible vascular network near the optic disc (e.g. O2, O30). The velocity profiles

were close to parabolic and became flatter downstream (see Fig. 7).

Fig. 5 Contour plot of the velocity distribution of the retinal arterial network.

Fig. 8 shows the pressure distribution of the retinal arterial network. The pressure

drops further away from the optic disc to the terminating branches to around 14-

15 mmHg, whereas the vessels leaving the visible vascular network near the optic

disc maintain a high pressure level. In Table 1 we show the pressure drops and

velocities for outlets with large diameters to small and outlets near the optic disc to

peripheral.
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Fig. 6 Vector plot of the velocity at junction J1, J2, J3.

Fig. 7 Velocity profiles at section S1 and S2.

Table 1 Calculated pressure drop and mean velocity at outlet.

Location Diameter (μm) Pressure drop (mmHg) Mean velocity (cm/s)

O1 77 8.55 0.93
O2 39 12.38 2.31
O3 83 10.08 0.84
O4 74 9.47 0.52
O5 75 12.75 1.02
O6 26 15.38 2.25
O20 30 15.38 0.01
O21 34 15.38 0.04
O29 30 13.22 0.43
O30 50 7.80 1.80
O31 34 13.76 0.07
O40 24 15.38 0.03
O41 49 15.36 0.004
O43 60 15.27 0.02
O44 55 15.20 0.34
O45 86 13.91 0.23
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Fig. 8 Contour plot of the pressure distribution of the retinal arterial network. (1000 Pa ≈
7.5 mmHg)

4 Discussion

The aim of this study was to create an initial step towards comprehensive patient-

specific models of the retinal vasculature based on readily available imaging. We

have investigated the blood flow of the retinal artery network by computational fluid

dynamics using geometry extracted from a high-resolution fundus image.

In previous studies in fundus image based CFD simulations from Liu et. al [14]

and Malek et al. [15] their arterial network had 10 and 9 outlets, respectively, com-

pared to 52 outlets in our study. Therefore, their vessel network represents a simpli-

fied geometry of the retinal arteries. In Liu et. al [14] and Malek et al. [15] the inlet

flow velocity in their simulation was set equal to the velocity in the central retinal

artery, which may be inappropriate, because the CRA branches when entering the

retina in the optic disc. This is the reason why our velocity values are approximately

half of their results. For instance, if we compare the velocity at locations S1 and S2

(see Fig. fig:arterytree) with the data from Malek et al. [15] we notice that the veloc-

ity at S1 peaks at 0.025 m/s (compare to 0.06 m/s) and at 0.0075 m/s at S2 (compare

to 0.015 m/s). The parabolic form of the velocity profiles are similar to the results

from Liu et al. [14] and Malek et al. [15].

At each bifurcation the flow rate as well the velocity of the blood is reduced,

which shows the calculated velocity distribution correctly. This is also in correlation

with blood flow velocity measurements with bidirectional laser Doppler velocimetry
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and calculated volume flow rates in the human retinal arteries performed by Riva et

al. [25].

Yet, there are still no direct measurements of pressure drops in human retinal ar-

teries [14], but Quigley et al. [24] estimate a pressure drop from the optical disc to

the peripheral vessels with diameters of 30 to 40 μm to be around 15 mmHg, which

correlates well with our study. Also the pressure distribution shows similarities with

the results from Malek et al. [15], except that in our study the pressure around the

optic disc is higher (≈15.4 mmHg (2050 Pa) compared to 14.8 mmHg). It is not pos-

sible to compare vessels leaving the network near the optic disc, because in Malek

et al. [15] existing only vessels with peripheral outlets and no with outlets near the

optic disc.

Due to the aim of this study, that is, to use cheap and readily available imag-

ing methods, our geometry is limited to planar 2D. Thus, the 3D geometry, like the

curvature of the retina and the tubular form of the vessels are ignored. Due to the

sphere geometry of the retina, the length and diameters of the vessel branches are

not represented correctly in a plane 2D model. Furthermore, the volumetric flow

rate behaves different in a 2D simulation and consequently the pressure (refer to

ΔP = R0×Q0), because the cross section is calculated as a rectangle and not with

r2×π . Thus, the results related to the flow rate in the present study have to be taken

as qualitative values instead of quantitative. Using optical coherence tomography

(OCT) as the imaging input, 3D information would be available including blood

vessels down to the capillary bed. However, using OCT to image retinal vasculature

presents many challenges. Firstly, when the OCT device does not have a tracking

system, it is only possible to image a field of view up to 6x6 mm. For better qual-

ity images, ophthalmologists usually scan even smaller areas. Furthermore, motion

artefact and phase-noise are visible in theses images. Although, fundus images are

limited to 2D, they offer clear visible blood vessels and in high-resolution. A fundus

image is limited to a field of view, which cuts the vessels on its edge abruptly. This is

a major problem within large vessels, which are ending with diameters of 70-85 μm.

Wide angle cameras with a large field of view could be a solution, but these images

would lose spatial resolution.

The assumption of a steady blood flow does not consider cardiac cycles. Wang

et al. [31] performed in vivo retinal blood flow measurements in the vessels enter-

ing and leaving the optic disc by Fourier domain Doppler OCT. Furthermore, the

pulsatile flow was measured and averaged over one cardiac cycle resulting in a total

arterial flow of 53.89 μl/min [31], which is similar to the total blood flow in our ar-

terial system with 53.57 μl/min (QIn1+QIn2), even with the 2D geometry. In further

studies, we plan on verifying this using transient simulations.

For this work we did not perform a mesh independence study, however, due to

the number of 2,551,978 elements, we assume that the mesh is refined enough.

In our simulation we used the Carreau-Yasuda non-Newtonian fluid model,

which is used in general blood flow simulations, but it does not consider the

Fahraeus-Lindqvist effect in microcirculation, where the viscosity depends of the

hematocrit and vessel diameter [22] and increases in vessels with diameters below

40 μm [23] (hematocrit HD = 0.45). However, in the diameter range of 40-120 μm,
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which constitutes 70% of our vessels, with shear rates of 1500-1800 1/s [29], both

models provide nearly similar dynamic viscosities. In a mathematical model about

hemodynamic parameters in the human retina vasculature [29], the apparent vis-

cosity decreases even until a vessel diameter of 7.4 μm, which cover our complete

vessel network and thus, the approximation of the Carreau-Yasuda model should be

valid.

The invisible vessels or ending vessels due to the limitation of planar 2D pho-

tographs are represented by a structural tree, which makes it possible to generate

the outlet boundaries, but it does not adequately represent the real branching of the

vessels and their physical parameters. Further work is needed to perfect the vessel

segmentation method and high-resolution images to detect all vessels down to the

vascular bed of 4 μm. Until then, the structural fractal tree is one of the few reliable

methods to model downstream resistance. In this study we used a terminating crite-

ria, like the previous blood flow simulation studies of Liu et al. [14] and Malek et

al. [15], of an vessel diameter below 30 μm, where the pressure is set to Pend = 0.

Sixteen of the 52 outlets have diameters below 30 μm and are assumed as the final

vessel bed, which generates an abrupt pressure change inside the vessel system. As

a consequence, the blood flow accelerates in front of the outlet and creates unphys-

iological conditions (see outlets O6, O14, O26). The attempt to calculate down to

14 μm as terminating criteria failed due to unrealistic results. In further studies the

structural fractal tree must be designed down to vessel diameters below the small-

est vessel in the model. Takahashi et al. [29] stated in their study that the pressure

drop of the vascular bed after the arterioles to the capillaries occurs only within a

vessel diameter of 5 μm and before the intravascular pressure in the retinal arteries

decreases from 38.9 mmHg at a vessel diameter of 108 μm to 29.3 mmHg at a vessel

diameter of 5.1 μm.

Further plans for our study is to connect this retinal artery network to the venous

network and create a 3D model of the retinal vasculature.

5 Conclusion

In this study we presented a CFD simulation of the blood flow in the retinal ar-

teries of a planar 2D vessel network model. The vessel network with 52 outlets

and visible branches with diameters in the range of 14-120 μm were obtained from

high-resolution fundus photograph with the Frangi filter method. This is the most

comprehensive human retinal artery network reported in the literature, where a CFD

simulation was performed. Based on this initial model, further CFD studies can be

realised to better understand the hemoynamics in the retinal microcirculation.
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Integration of an Electrophysiologically-Driven
Heart Model into Three-Dimensional
Haemodynamics Simulation using the

CRIMSON Control Systems Framework

Christopher J. Arthurs and C. Alberto Figueroa

Abstract We create a multiphysics cardiovascular model by integrating the electri-

cal and active-tension generation properties of the cardiac myocyte into a lumped

parameter network model of the left ventricle, which is then applied to create a

boundary condition for three-dimensional haemodynamics simulation. The process

demonstrates the power and flexibility of the CRIMSON Boundary Condition Tool-

box and Control Systems Framework, our accessible tools for designing, imple-

menting and testing novel physiological controlled boundary conditions for fluid

flow.

Key words: Cardiovascular Modelling; Transitional Physiology; Haemodynamics;

Physiological Control; Heart Model

1 Introduction

Lumped parameter network (LPN) models have been used extensively to simulate

behaviour within the cardiovascular system, either exclusively [29, 3] or coupled

with one-dimensional [12, 1, 13, 18] or three-dimensional [17, 25, 24, 30] vascular

domains. Vascular regions which have been investigated using LPN models include

the coronary arteries [7, 8], the heart [13, 5, 14, 9], the brain [1] and full closed-loop
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because they reproduce key phenomena such as the change in heart rate when

standing up [9], or the changes in coronary flow that occur during exercise [2],

but also because the study of the highly-integrated networks that cardiovascular

control systems form is challenging in vivo or in vitro, from both the technical and

the conceptual perspective.

Despite the accepted need for control systems models, progress is hindered by the

time-consuming nature of implementing and testing control systems within exist-

ing powerful simulation packages. In this work, we present the latest developments

made to our cardiovascular geometry creation and incompressible Navier-Stokes

hemodynamics simulation software, CRIMSON (CardiovasculaR Integrated Mod-

elling and SimulatiON) [28], which we assert can accelerate progress by making the

design of controlled physiological models faster, easier and more accessible, even

to users without a strong background in software development. In order to demon-

strate their flexibility, we use CRIMSON’s boundary condition and control system

design tools, the CRIMSON Boundary Condition Toolbox (BCT) and the CRIM-

SON Control Systems Framework (CSF), to create an electrophysiologically-driven

heart model, and use it as an inflow boundary condition as part of a multidomain,

multi-physics Navier-Stokes haemodynamics simulation in an example vascular ge-

ometry. The model makes use of an existing biophysical model of the cardiac my-

ocyte and its active tension generation, which we obtain from the mathematical cell

model repository cellML [10, 27]. The benefits of using an electrophysiologically-

driven heart model is that it allows us to leverage decades of modelling work on

the behaviour of the cardiac myocyte, with different desirable properties available

depending on the particular choice of myocyte model. The primary purpose of this

article is to demonstrate rapid model design and integration, so our heart model

follows previous work [19].

Previous non-electrophysiological LPN heart models generally employ a time-

varying elastance method [21, 3, 16], and include those that model flow-rate de-

pendend pressure losses in the left ventricle [9]. These models successfully repro-

duce aortic pressure and flow waveforms. Electrophysiological LPN models have

been shown to allow the effect of subcellular processes upon the haemodynamics

to be investigated, for example aortic pressure can be seen to depend on L-type cal-

cium channel conductance and upon on pacing frequency [19]. Similarly, appropri-

ate electrophysiological heart models are capable of reproducing the Frank-Starling

mechanism, the effects of dyssynchronous contraction and choice of pacing loca-

tion [26]. In general, the use of the model means that the aortic valve inflow in

the fluid domain is dependent upon subcellular processes and parameters, includ-

ing transmembrane voltage difference, ion channel state and intracellular calcium

concentration.
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2 Methods

2.1 Overview of CRIMSON

We perform our simulations using CRIMSON, which provides a complete software

pipeline for creating Navier-Stokes hemodynamics simulations from medical imag-

ing stacks, with an emphasis on power and usability. It consists of two main com-

ponents: the intuitive image analysis and segmentation interface, and the powerful

flowsolver simulation package. The flowsolver is highly scalable, having been used

previously to simulate pulsatile flow on 16,384 cores of an IBM Blue Gene/Q su-

percomputer. In the present work we discuss only two aspects of the pipeline: the

boundary condition control tool: CRIMSON CSF, and the closely-related arbitrary

LPN condition design and specification tool: CRIMSON BCT. We used CRIMSON

to create a simple vessel geometry for our investigations, which can be seen in Fig-

ure 2.

2.2 Graphical Design of Arbitrary Lumped Parameter Boundary
Conditions

Lumped parameter components are assembled into a network using a drag-n-drop

interface. The available components include resistances, compliances, valves, in-

ductances and volume-tracking compliance chambers, and they can be arbitrarily

arranged, and attached at a point to a boundary of the 3D simulation domain, as

shown in Figure 1. One circuit is created for each boundary, connected, for exam-

ple, as shown in Figure 2, and if desired, a circuit to represent the venous system

can be created and attached to some or all of the boundary circuits, in order to create

a full closed-loop network. We used the BCT to create the heart model (Figure 4)

and two downstream Windkessel models.

We use a standard component layout for the heart model LPN; similar designs

have been used previously to simulate aortic inflow [9, 6]. However, because we

want to control pressure generation using an electrophysiological model, we aban-

don the usual feature that the pressure within the ventricle is computed using a time-

varying elastance approach, and instead model the left ventricle by a component

which simply keeps track of the volume of blood that it contains. The construction

of the model in CRIMSON BCT is shown in Figure 4.

2.3 Powerful, Rapid and Accessible Control Systems Design

CRIMSON CSF has access to, and is able to adjust, any of the component parame-

ters or nodal pressures within any of the CRIMSON BCT boundary condition mod-
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Fig. 1 The creation of a three-element Windkessel model using the drag-n-drop CRIMSON bound-
ary condition toolbox.

Fig. 2 A complete set of boundary conditions, designed in the arbitrary boundary condition tool-
box and attached to a 3D domain. A heart model is shown on the right, and the three-element
Windkessel models on the left represent downstream vascular beds.

els, and it has access to all of the pressures, volumes and flows within each boundary

condition. This provides sufficient functionality for modelling many physiological

control mechanisms. Control systems themselves are described using Python, a pop-

ular high-level language which is suitable for both beginners and advanced users.

While the CRIMSON flowsolver itself is written in Fortran and C++, both of which

require considerable expertise to work with, Python is similar to MATLAB in terms

of being much easier to learn and to use. The Python interface with the CRIMSON
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Fig. 3 A simple example Python script that could be used to control a resistance in one of the
boundary conditions, dependent here on time and on a pressure within the boundary condition.

flowsolver is simple, and works as follows. To design a control system for a par-

ticular node or component, we annotate it with the name of the Python controller

script within the arbitrary boundary condition toolbox. We then take the CRIMSON

Python script template which contains all of the necessary boilerplate code, includ-

ing the automatically passed-in data on the state of the system, and the return value

(the new value of the controlled parameter that we wish to set), and we write the

code for the custom control system we wish to design into the template. A simple

example control script for controlling a resistor is shown in Figure 3.

2.4 The Cardiac Myocyte Model

The use of the electrophysiological model follows a previous approach used for

zero-dimensional simulation due to Bo Shim et al. [19], in which the authors took

an existing electrophysiological model of a cardiac myocyte, the ten Tusscher 2004

model [23] which, upon the application of an electrical stimulus, generates an action

potential caused by the flow of ions across the cell membrane. The model simulates

the concomitant calcium release within the cell, which is the internal signal which

causes the cell to generate active tension. This model was modified to be suitable for
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Fig. 4 The CRIMSON Boundary Condition Toolbox, used here to design a heart model. Nodes
with prescribed pressure are tagged with the X symbol. The pressure prescription at the left-
ventricular pressure node (PLV) here will be set on each time-step by the electrophysiological cell
model, within the Python control script, using the volume stored in the LV component as input.

connection to an intracellular cross-bridge dynamics model [15], which generates

the active tension in response to the calcium release. From this, Bo Shim et al.

created a pressure generation model by assuming the ventricle to be a thin-walled

hemispherical shell, and applying Laplaces law to convert a known volume and

wall tension into ventricular pressure. Our approach uses the electrophysiological

model of Shirokov et al. [20] coupled with the Negroni and Lascano model for

active tension generation, as this combination was available in the cellML [10, 27]

repository, as the work of Matsuoka et al. [11]. We modified the model to include

the thin-shell-based ventricular pressure generation approach of Bo Shim et al.

2.5 Inserting the Cardiac Cell Model into the CRIMSON
Flowsolver using the Control Systems Framework

We downloaded the Matsuoka model from the cellML model repository as Python

code [4], and inserted it into our CRIMSON Python interface template script, mod-

ifying it so that it would advance a single time-step each time it was called to update

the control. We did not adjust the parameters from the CellML exposure of the

model [4]. We introduced the shell-based pressure computation, using the left ven-

tricular volume data automatically passed to the controller by the flowsolver, and

including the change of half-sarcomere length as the myocytes are stretched by the

volume within the ventricle. We further modified the model so that during diastole,

the filling is controlled by a constant diastolic elastance. The computed pressure

is returned to the flowsolver at the end of each update, and is used to set the left-
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Fig. 5 Aortic pressure generated by the heart model. Note that changes in heart rate are handled
automatically and naturally by the cardiac cell model.

ventricular pressure within the heart model. When this prescribed pressure exceeds

the aortic pressure, the aortic valve opens and blood flows into the aorta, and the

volume in the left ventricle seen by the control system is reduced. The converse is

true during diastolic filling.

We relate active tension to left ventricular pressure using the left-ventricular vol-

ume, a spherical approximation of the ventricle, and Laplace’s law, and the param-

eters of the Windkessel models at the two other boundaries of the domain, seen in

Figure 2, were tuned to adjust the aortic pressure waveform and ventricular ejection

fraction.

3 Results

We were able to achieve our primary objective of creating a complex boundary

condition, an electrophysiological heart model, by making use of the CRIMSON

Boundary Condition Toolbox and Control Systems Framework. This demonstrates

the power of the tools, which enabled us to create the heart model from initial design

to full functionality in the space of two days.

Figures 5 and 6 show that the heart model successfully reproduces an aortic pres-

sure pattern and left-ventricular pressure-volume loop. Each beat is the result of an

electrical stimulus applied to the myocyte within the control script, and so we can

change the heart rate by changing the frequency of the electrical stimulus; we do

this four seconds into the simulation shown in Figure 5.
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Fig. 6 The pressure-volume loop produced within the left ventricle by the electrophysiological
heart model, implemented using the control systems framework. Several beats are displayed.

4 Discussion

We successfully used the model to generate inflow pressure and flow in a Navier-

Stokes simulation domain, and to generate pressure-volume loops for the left ventri-

cle. The use of the cell model allows us to initiate each pressure pulse by simulating

the application of an electrical stimulus. The development of the model was rapid,

due to the novel tools which we have created.

4.1 The Cardiac Cell Model

Using a cardiac electrophysiology myocyte model means that the effects of chang-

ing the electrical pacing cycle length on the cell’s internal state variables are natu-

rally propagated to the generation of ventricular pressure. Cell models have differing

levels of realism in their ability to reproduce physiologically-observed pheonmena.

The model of Shirokov et al. [20], as modified by Matsuoka et al. [11], is only one

such possiblity. One reason to investigate other modes is that the duration of systole

is too short. This is a limitation of the cell model used; it is likely casued by the

Matsuoka model using data from guinea pig myocytes. This is something that we

could improve upon by replacing the electrophysiological component of the Mat-

suoka model with one for a human myocyte [23, 22].
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Fig. 7 A schematic of circuit in pure zero-dimensional mode. In this mode, CRIMSON flowsolver
automatically generates a replacement for the 3D domain (red) with the same topology (compare
Figure 2), and connects it to the boundary conditions, as prescribed for the 3D interface. This
allows very rapid prototyping simulations to be run.

4.2 Scope of Arbitrary Cardiovascular Control Mechanism Design

CRIMSON CSF aims to provide a complete set of tools for controlling the param-

eters within boundary condition models. For example, its access to the parameters

which determine physiologically-important factors such as tissue perfusion and oxy-

gen delivery means that control systems which monitor and adjust to varying tissue

perfusion requirements can be created. Additionally, control systems which do not

rely on any such monitoring, such as the cardiovascular response to psychological

stress, could be simulated by creating a control system which does not use any of

these variables as input. We believe that the facility to in this manner adjust any

of the nodal pressures and any of the component parameters within the boundary

conditions should allow most physiological control systems to be modelled.

4.3 Rapid Prototyping

One of the features which we found to be the most useful during this work was the

facility for rapid boundary condition design, testing and approximate parameteri-

zation provided by the CRIMSON flowsolvers pure zero-dimensional prototyping

mode. Enabled using a single input flag, this mode automatically replaces the 3D

simulation domain with an additional, simplified zero-dimensional domain (Figure

7), allowing many hundreds of cardiac cycles to be simulated in a short period of

time on a laptop, as opposed to achieving a few beats per hour on powerful comput-
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ing hardware. This is particularly useful for approximately parametrizing a control

system in order to study some state transition, as we generally require the system

to reach an equilibrium state before testing a control perturbation, and then we re-

quire a further extended period of simulation to observe the transitional behavior.

We note that because this mode neglects all 3D effects, the resulting parameteriza-

tion should only be seen as an approximate value, which must be fine-tuned in full

3D simulation mode.

5 Conclusions

We performed multiphysics simulation of the cardiovascular system by using an

electrophysiological heart model to generate flow within a three-dimensional Navier-

Stokes haemodynamics simulation. The model allows an electrical stimulus applied

to the myocyte to trigger a blood pressure pulse. Creating this model required the

merging of models from different subfields of cardiovascular modelling; due to the

available tools we were able to do this with a minimum of effort, with the model

design and integration taking two days of work.

In particular, this work demonstrates that our boundary condition design tools

and control systems framework enable rapid development of remarkably complex

enhancements of the CRIMSON flowsolver. While pressure generation in the heart

model is not typically considered to be a control system, using the control frame-

work allowed us to show that it is useful for more than just control systems, and also,

because fusing two models in this manner would otherwise be a time-consuming

task, it demonstrated the ease with which potentially difficult tasks can be achieved.

A key purpose of these new tools is that it gives researchers the space to explore,

so we do not expect to predict all possible uses, but to list a few, potential applica-

tions include simulating hemorrhage, both by creating the bleed in the first place,

and by simulating the response of the peripheral resistance and venous compliance,

modelling the exercise response in the peripheral vasculature and in the heart, as

coordinated by the neural central command, or implementing autoregulation sys-

tems within individual tissue beds. Many potential control system models will have

a lower level of complexity than the electrophysiological heart, so we believe that

our framework will be of great use to workers as they design the next generation of

transitional physiological models in hemodynamics.

6 Acknowledgements

We gratefully acknowledge support from the European Research Council under the

European Unions Seventh Framework Programme (FP/2007-2013) / ERC Grant

Agreement n. 307532, and the United Kingdom Department of Health via the

National Institute for Health Research (NIHR) comprehensive Biomedical Re-

174



search Centre award to Guys and St Thomas NHS Foundation Trust in part-nership

with Kings College London and Kings College Hospital NHS Foundation Trust.

The authors wish to thank Rostislav Khlebnikov and Kevin Lau for their assis-

tance and advice during this work. We acknowledge the developers of QSapecNG

(http://qsapecng.sourceforge.net/), the GPLv3-licensed circuit simulation package

which we have modified to create the CRIMSON arbitrary boundary condition tool-

box, and the Free Software Foundation (https://www.fsf.org/) for supporting inno-

vation via GNU (https://www.gnu.org/home.en.html) and the GPL Free Software

Licenses (https://www.gnu.org/licenses/gpl-3.0.en.html).

References

1. Alastruey J, Moore SM, Parker KH, David T, Peirò J, Sherwin SJ (2008) Reduced modelling of
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Abstract. This paper proposes a framework to simulate patient spe-
cific structural Magnetic Resonance Images (MRIs) from the available
MRI scans of Alzheimer’s Disease(AD) subjects. We use a biophysical
model of brain deformation due to atrophy that can generate biologically
plausible deformation for any given desired volume changes at the voxel
level of the brain MRI. Large number of brain regions are segmented in
45 AD patients and the atrophy rates per year are estimated in these
regions from the available two extremal time-point scans. Assuming lin-
ear progression of atrophy, the volume changes in scans closest to the
half way time period is computed. These atrophy maps are prescribed
to the baseline images to simulate the middle time-point images by us-
ing the biophysical model of brain deformation. From the baseline scans,
the volume changes in real middle time-point scans are compared to the
ones in simulated middle time-point images. This present framework also
allows to introduce desired atrophy patterns at different time-points to
simulate non-linear progression of atrophy. This opens a way to use a
biophysical model of brain deformation to evaluate methods that study
the temporal progression and spatial relationships of atrophy of different
regions in the brain with AD.
Keywords: Alzheimer’s disease, biophysical modeling, biomechanical
simulation

1 Introduction

Alzheimer’s Disease (AD) is one of the most common types of dementia. It is a
neurodegenerative disease that progresses gradually over several years with the
accumulation of neurofibrillary tangles (NFTs) and amyloid-β (A-β) plaques
[2]. These microscopic neurobiological changes are followed by the progressive
neuronal damage that leads to the atrophy of the brain tissue. The atrophy or the
volume changes of brain tissue is a macroscopic change that structural Magnetic
Resonance Imaging (MRI) can estimate in different brain regions. Many different
methods have been proposed to estimate atrophy in some particular regions of
brain that are known to be affected in AD [9].

177



In addition to estimating specific brain structures with atrophy, longitudi-
nal imaging data could also potentially be used to study the temporal inter-
relationship of atrophy in different structures. For instance in [6], authors esti-
mate per-individual rates of atrophy in 34 cortical regions and in hippocampus.
Then they study the groupings of these structures based on the correlation of
the atrophy rates. In [8], authors define AD progression as a series of discrete
events. Atrophy in different parts of the brain are taken as different events along
with clinical events. Without any prior to their ordering, the model finds most
probable order for these events from the data itself. They use Bayesian statis-
tical algorithms for fitting in the event-based disease progression model. The
objective of these kinds of studies is to understand how different regions of brain
interact during the neurodegeneration and find its trajectory. Such studies can
benefit with large number of longitudinal images of AD patients. In this con-
text, a model that can simulate many time-point images from a few available
longitudinal images can be a valuable tool.

Atrophy simulators [11][14][18][5] have been proposed in the literature and
used mostly for the validation of registration or segmentation methods [4][16],
or to estimate uncertainty in the measured atrophy [17]. The simulators in
[11][14][16] use a Jacobian based methods where the desired level of atrophy
is set at each voxel, and the deformation that best approximates the desired
level of atrophy is found. Regularization is used in the optimization to enforce
certain desired conditions such as topology preservation. The advantage of these
methods is the ability to define atrophy maps at the voxel level. However regular-
ization parameters used to enforce topology preservation are generally difficult
to relate to a plausible biophysical process of AD and can create difficulties in
simulating opening of certain structures such as sulci. It is not trivial to consider
different tissue behaviors in such approaches. In [18][5], authors propose a model
of brain deformation based on thermoelasticity. Volume changes are defined in
particular structures/tissues of a meshed brain by assigning different thermal
coefficients. Simulation of the images is done by first solving the thermoelastic
model of tissue deformation with Finite Element Method (FEM), and then by
interpolating the obtained displacement field from the mesh to the image. FEM
involves moving back and forth from voxels to meshes which creates numerical
difficulties and inaccuracies in the model personalization.

In [12] we proposed a new biophysical model of brain deformation due to
atrophy in AD that combines the advantages of the models mentioned in the
previous paragraph. The mechanisms of neuronal deaths and its evolution are not
well known for AD and are likely to be primarily guided by complex physiological
processes. However we believe that the biomechanics of brain tissue might play
an important role in determining the consequence of the neuronal deaths on
brain shape changes. Our biophysical model presented in [12] builds upon the
assumptions that we relate to the biophysical process of tissue shape changes
as the consequence of local volume loss. This model can be used to simulate
time-series MRIs starting from a real input baseline MRI.
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In this work we use our biophysical model developed in [12] to present a
framework that allows to interpolate or extrapolate patient specific unseen time-
point images from at least two available time-point images of the subject and
to assess how closely these simulated trajectories follow real patient trajectories.
We also improve the implementation of the boundary condition of the model by
imposing zero deformation in the skull and all the regions outside of the skull.
In [12] the zero deformation was imposed at the image boundaries and not at
the brain-skull boundary.

The following section briefly explains the assumptions and implementation
of the biophysical model we presented in [12], and in section 3 we present how
we interpolate new images between two acquisition time points.

2 Biophysical Model of Brain Deformation due to
Atrophy

The atrophy rate ã(x, t) at any position x at time t for a representative elemen-
tary volume of V (x, t) is defined as the negative rate of change of volume per
unit volume:

ã =
−1
V

∂V

∂t
.

For any time Δt that results in sufficiently small displacement, the amount
of atrophy is a = ãΔt. Any deformation field that has atrophy a should satisfy
the following equation:

∇ · u = −a, (1)

where u is the displacement of material particles during the Δt.

We do not explicitly model the neuronal loss and tissue remodeling at the
microscopic level which requires biochemical and cellular physiological knowledge
in detail. We abstract the phenomenon that evolves over several months or years
in the brain. In Creutzfeldt-Jakob disease, no gross brain shape changes are
reported and the imaging only shows hyperintense signals on T2-weighted images
[10]. However, this is not the case in AD and longitudinal MRIs show a decrease
of brain volume instead [9] without any ”holes”. That means the tissues should
restructure as the neuronal deaths increase with time. This leads us to a basic
assumption in the proposed model that after the death of neurons, remodeling
of the tissue occurs such that the tissue density remains constant while both the
mass and volume decrease. We further assume that the atrophy creates internal
stress which results in the deformation minimizing a strain energy.

Using Saint Venant-Kirchoff model for an elastic material, this can be ex-
pressed as the minimization of which results in the deformation of the tissue
minimizing the strain energy.

R(u, p) =

∫
μtr(E(u)2) +

λ

2
(tr(E(u)))2 −

∫
p (∇ · u+ a) (2)
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where p is a Lagrange multiplier, μ and λ are Lamé constants, and E is Lan-
grangian Green strain defined as: E = 1

2

(∇u+∇uT +∇uT∇u
)
.

By taking a sufficiently small time step Δt, this deformation could be rea-
sonably modeled as being linear elastic. For example, for a 2% global atrophy
per year, we have Δt = 1 year, and the atrophy during the year as a = 0.02.

Under linear elastic assumptions, minimizing the energy in equation (2) is
equivalent to solving the following set of equations.

μΔu−∇p = (μ+ λ)∇a

∇ · u = −a (3)

where Δu is a component-wise Laplacian of u. This equation is very similar
to the Stokes flow equation in fluid dynamics. The difference is in the non-zero
divergence term which corresponds the loss of mass and volume in the tissue.
The momentum equation shows that the gradient of the prescribed volume loss
acts as the force term that moves the tissue for the structural remodeling. The
Lagrange multiplier p is some sort of virtual pressure whose algebraic values can
be seen as the sources and sinks of fluid.

2.1 Modeling CSF Region

The timescale of CSF production is hours, which is much smaller compared to
the time scale of tissue remodeling due to atrophy. To allow the CSF to expand
as required when the brain deforms due to the prescribed atrophy, we release
the strict incompressibility constraint in 3. Furthermore, the force term of the
momentum equation in 3 is no longer required. Thus the combined equation for
both the brain parenchyma and the CSF regions is:

μΔu−∇p = (μ+ λ)∇f

∇ · u+ kp = −f (4)

where we have,

– Brain parenchyma region: k = 0, and f = a
– CSF region: k = 1, and f = 0.

Boundary Conditions: Dirichlet boundary conditions with zero displace-
ment is enforced at the skull.

Material Parameters μ and λ: The deformation model here corresponds
to the structural readjustments due to cell loss, thus the Lamé parameters do not
have the same usual meaning as during an elastic deformation of the material due
to application of an external load/force. The voxel-wise volume change constraint
and the boundary conditions i.e. the shape of the tissue-CSF and brain-skull
interface have much more impact on the deformation of the brain parenchyma
than any specific scalar values of μ and λ. In the present work these coefficients
are set to 1 and 0 respectively.
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2.2 Staggered Grid Discretization and Finite Difference Method

The equation (4) requires a partition of the computational domain into different
regions. These regions are obtained by using skull stripping and segmentation of
the input baseline brain MRI. The solution of the PDE provides us a deformation
field that is applied to the baseline image to generate simulated follow-up image.
We use Finite Difference Method (FDM) with staggered grid discretization to
solve the system of PDEs in (4). Using staggered grid with proper placing of the
pressure and velocity variable ensures stability in the solution. FDM is chosen
instead of FEM to avoid brain meshing and the complexity of transporting com-
puted variables from mesh to image at each iteration. This allows us to solve the
system in a grid that is of the same size as the input image where the grid fits
naturally to the image. This also makes it easier to obtain the partition of the
computational domain into different regions directly by using a skull stripping
and a segmentation algorithm.

For typical brain MRIs of 1mm3 resolution, this computational problem size
becomes so large that direct solvers are impractical due to memory limitations.
The set of equations in 4 is similar to Stokes flow equation which is a saddle point
system. It needs a suitable combination of an iterative solver and a preconditioner
to solve it. We use a Schur factorization to split the equations into the momen-
tum equation and the pressure equation. Each of these equations is solved using
different iterative solvers. Our implementation uses composable solvers for mul-
tiphysics with PETSc library [1] using fieldsplit preconditioner, an approach
detailed in [3] with an example for Stokes flow solver with Schur complement
factorization. The momentum equation is preconditioned with hypre which is
an algebraic multigrid preconditioner and can be called from the PETSc inter-
face. The implemented system is run using distributed computing in a locally
available cluster.

3 Experiments and Results

We use the Miriad dataset [13] that has multiple time-point T1 structural MRIs
of 45 Alzheimer’s patients in the range of 2 weeks to 2 years. Since the dataset
contains several time-point scans, we can compare the simulated intermediate
time-point images to the corresponding real intermediate images. To prescribe
personalized atrophy patterns we need an atrophy estimation for each subject
from the extremal time-points. We perform the whole brain segmentation us-
ing recon-all command in FreeSurfer [7]. For the segmentation, FreeSurfer’s
longitudinal stream [15] is used to create unbiased subject specific templates.
This allows us to compare the volumes of large number of regions in the baseline
and the follow-up images and estimate atrophy in each of these regions. These
estimated atrophy can then be modified and prescribed to each of the baseline
MRIs to predict intermediate time-point images. The setup of the experiment
we performed is described as follows:
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Fig. 1. Top left is the input baseline MRI to which the atrophy shown in bottom left
is prescribed. A follow-up image is simulated using our model. The difference of the
simulated follow-up and the baseline MRI is shown in top right. Bottom right is the
atrophy map associated to the deformation field that was obtained as the solution of
the model when using the atrophy map on the left as input. As expected, in brain
tissue region they are same while in CSF there is expansion to compensate the tissue
loss keeping the skull fixed.

1. Find available extremal time-point scans: baseline Ib and the final follow-up
If . Let tf be the time (in years) between the baseline scan and the final
scan.

2. Find a mid-point scan Im that was scanned tm years after the first scan.
This is found by finding tm that is closest to tf/2.
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3. Use FreeSurfer to estimate an atrophy map af . This is a scalar image such
as the one shown in bottom left of Figure 1. The intensities are the atrophy
estimated from FreeSurfer for all the segmented brain regions.

4. Simulate a follow-up image Îm that corresponds to the mid-point scan Im
by prescribing am where am = af ∗ tm/tf .

5. Run the FreeSurfer whole brain segmentation on this simulated image Îm
and compute volumes of all the segmented regions.

6. Compare FreeSurfer computed volumes of all regions of the images Im and
Îm.

Fig. 2. Boxplot of the atrophy estimates for the real mid-point images in the coritcal
regions and hippocampus. These are the regions that were used in [6]. The data shows
the distribution of FreeSurfer atrophy estimates in the AD population of the MIRIAD
dataset when considering the first and the mid-point scans.

In Figure 3 we see that for most regions the difference in the atrophy esti-
mation of the interpolated mid-point image and that of actual mid-point image
have median close to zero. Higher variability in the difference seems to be mostly
in the regions where there is higher variability in the atrophy estimates of the
real mid-point images. The large inter-subject variation of the difference between
the atrophy estimate in the real mid-point image and the interpolated mid-point
image could be due to several reasons. One obvious issue is that the FreeSurfer
segmentation with the longitudinal stream expects all the images that are to
be segmented to be preprocessed in the same manner. However, in our case the
interpolated mid-point image has undergone an extra resampling step while the
real mid-point image has not. This extra resampling step is required because
the interpolated mid-point image was obtained by warping the real baseline im-
age with a displacement field. Furthermore, the choice of interpolation during
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Fig. 3. Boxplot of the difference in the FreeSurfer atrophy estimate in the real mid-
point image and the interpolated mid-point image for all the 45 AD subjects present
in MIRIAD dataset. The regions shown are the same as the one shown in Figure 2
and are displayed in the same order. The interpolated mid-point image is obtained by
simulation using the pair of extremal time-point images of each subject.

the resampling step can also affect the volume measurements by FreeSurfer. We
used trilinear interpolation for the resampling. The extra resampling step and
the choice of interpolation does have an effect on the estimation of volumes.
This has been shown, for instance in [16] for other segmentation based atro-
phy estimation techniques. Furthermore, the interpolated mid-point image has
a noise (noise inherent in any MRI) that is highly correlated with the real base-
line image. However, the noise in real mid-point image is not correlated to the
baseline image. This also affects the atrophy estimation and hence contributes
to the variability in the atrophy estimation difference. A detailed analysis must
be done to find out the regions that are the most reliable ones in estimating
volume changes for both the real and simulated images. The performance of the
atrophy measurement tools on simulated images should be thoroughly evaluated
to find out the best regions that we can rely upon to test how closely we predict
volume changes in new time-point images.

In this case we have interpolated the intermediate time-point by linearly
scaling the estimated atrophy. For a small time window of a couple of years this
is reasonable but if we want to extrapolate for instance for several years we would
need a non-linear model of atrophy progression. The presented framework allows
one to compare the trajectory of brain shape changes with different models of
atrophy progression. The ability to prescribe any desired atrophy at any time
point allows one to introduce atrophy at different regions of brain at different
times. This can be exploited in evaluating the methods proposed in studies such
as [8] which order the events from time-series data.
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4 Conclusions

We have proposed a framework to generate patient specific multiple time-point
images based on our biophysical model of brain deformation due to atrophy in
AD. The used model is motivated from biomechanical principles and it mod-
els the consequence of tissue loss in brain shape changes. From the available
two scans of MRI of a patient at two different time-points we estimate atrophy
in large number of brain structures using FreeSurfer whole brain segmentation
[7]. The derived atrophy patterns are linearly scaled and prescribed to the bio-
physical model to simulate the another time-point image. Using the MIRIAD
dataset [13] of 45 AD subjects with multiple time-points we compare the simu-
lated time-point images against the actual time-point images. The future works
will include building the most reliable methods to compare the volumes in simu-
lated and real images. We will also explore the possibility of evaluating methods
that study the temporal relationships, ordering and co-evolution of atrophy in
different structures of the brain.
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Abstract   

Traumatic brain injury (TBI) is one of the leading causes of long-term disabil-
ity in both industrialised and developing countries around the world. It results in 
impaired and structural damage to the brain, caused by the application of external 
mechanical forces to the head. This paper aims to investigate the effect of shear 
wave interference as a key mechanism to TBI, by identifying localised regions of 
the brain exhibiting high strains in a comprehensive finite element (FE) head 
model.  

We improved a magnetic resonance imaging (MRI) voxel-based mesh model of 
the head by introducing key meningeal membranes (dura mater, falx cerebri and 
tentorium cerebelli). We used this model to identify regions of interest through 
modal analysis and investigate the shear wave interference mechanism by transi-
ent modal dynamic analysis (TMDA) and the traditional explicit direct integration 
method (EDIM) under frontal impact loading scenarios. TMDA is a novel proce-
dure for 3D head models and allows investigation into the influence of individual 
deformation modes on the overall system response. 

Results show that falx cerebri and tentorium cerebelli play pivotal roles in the 
interference process, with some brain regions exhibiting amplification of strains 
10-20ms after impact. These strains are seen to be higher than at the coup and
counter-coup sites.

Keywords: Traumatic Brain Injury, shear waves, interference, transient modal 
dynamic analysis 

Introduction 

Traumatic brain injury (TBI) is one of the leading causes of long-term disability in 
both industrialised and developing countries around the world. The World Health 
Organisation states that this type of debilitating injury will exceed many diseases 
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as the major cause of death and disability by the year 2020 [1]. What is this ‘silent 
epidemic’ [2] and why is it so damaging? TBI, also known as intracranial injury, 
results in temporarily or permanently impaired and structural damage to the brain, 
caused by the application of external mechanical forces to the head. These me-
chanical forces can be applied through various modes of excitation – rapid accel-
erations and decelerations, impact loads, inertial loads, blast waves and penetra-
tion-by-projectile. The environments these inputs can occur range from the 
extremely common – road traffic accidents, falls and other unintentional injuries, 
etc. to those affecting a particular subset of the population – contact sports, mili-
tary activity, violence. The associated effects of TBI can range from mild (mTBI), 
which can lead to cognitive problems such as headaches, memory problems, mood 
swings and frustrations; to severe, which can lead to major causes of unconscious-
ness and persistent vegetative state after trauma. The latter is a result of diffuse 
axonal injury (DAI), involving damage of individual nerve cells (neurons) and 
splitting of the axonal connection between neurons due to traumatic shearing forc-
es. It should come as no surprise now that there exists a vast amount of literature 
in the field of TBI, and the research dedicated to reducing its impact ranges from 
epidemiological studies [1] to the associated costs of traumatic brain injury [3, 4], 
to tissue/single cell-based work in order to detect the key molecular signatures of 
the injury [5]. The main problem is the inability to accurately define the relation-
ship between kinetic inputs and subsequent brain injury and its associated effects.  
While clinicians and neuroscientists focus on pathological and physiological re-
search, physicists and engineers use the principles of mechanics to study the phys-
ical phenomena involved in the TBI process to provide explanations for the cause 
of brain damage. Various methods have been employed to study the mechanics of 
brain injury, including animal and human cadaver experiments [6, 7], magnetic 
resonance imaging (MRI) and elastography (MRE) [8-11], physical modelling 
[12, 13] and mathematical modelling [14-16]. In particular, finite element (FE) 
modelling has become paramount in studying the mechanics of brain injury. A 
critical review of the state-of-the-art brain modelling and simulation for injury 
prevention together with practical guidelines for analysts creating finite element 
brain models have been recently published by Yang and King [17]. 

The stress and strain from FE solutions may be taken as a quantitative measure 
of tissue damage and correlated with pathological results from clinical and epide-
miological investigations [18]. Once good correlations are proven and the FE 
model is well validated against experimental data specific to the injury mechanism 
being modelled, it may serve as a valuable tool for better understanding injury 
mechanisms, injury diagnosis and design of preventive technology. 

According to current literature, DAI in humans is estimated to occur at maxi-
mum shear strains of 0.1 – 0.5 and strain rates of approximately 10 – 50/s [12, 13]. 
Further studies also suggest that the brain cells are considerably damaged at 
strains >0.10 and strain rates >10/s [18, 19].  

The stresses and strains created by impact loading of the head are the result of  
dilatational (pressure) and distortional (shear) waves propagating throughout the 
brain [20]. Dilatational waves exhibit particle motion along the direction of propa-
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gation while distortional waves display particle motion transverse to the direction 
of propagation. The two waves separate over time due to the large difference in 
wave speeds [21]. It is observed that the dilatational strains are approximately 
1,000 times smaller than distortional strains, with minor differences between max-
imum shear strain and maximum principal strains in TBI events [22]. It is also im-
portant to note that key membranous structures, the falx cerebri (separating the 
cerebral hemispheres) and tentorium cerebelli (separating the cerebellum and oc-
cipital lobe), are seen to affect the shear wave propagation patterns in the brain 
due to the change in impedance, encouraging high reflection and attenuation [23].  

 
Fig. 1.  Mid sagittal view of Von Mises stress distribution depicting spherically converging shear 
wave propagation (left to right) over 15ms. 

Upon simulation of an angled frontal impact load to a 3D FE head of MRI reso-
lution, Chen identifies spherically converging shear wavefronts, propagating from 
the skull boundary towards the inner regions of the brain [24] long after the pres-
sure waves have subsided (Fig. 1). What was not investigated nor discussed how-
ever, was the response of the brain in an extended time domain, as travelling shear 
wavefronts of various frequencies interact with each other after reflection from 
substructures. These are referred to as interference effects, as superposition of 
shear wave amplitudes could create localised areas of high shear stress and strain, 
contributing to the TBI damage mechanism. To date, no direct investigation of 
shear wave interference has been made in the literature of TBI modelling. 

This paper aims to investigate the effect of shear wave interference as a key 
mechanism to TBI, by identifying localised regions of the brain exhibiting high 
strains using a comprehensive FE head model.  

Finite Element Model of the Head 

An MRI voxel-based FE mesh of the human head was obtained from Chen [24]. 
The very fine mesh makes it possible to capture stress wave propagation during 
impact loading. The model is capable of describing important geometrical features 
of the head due to the 1.33mm x 1.33mm x 1.30mm voxel size. A Laplacian mesh 
smoothing algorithm was used to achieve smooth outer surfaces and inner 
interfaces between tissues. The model’s 1,061,799 elements and 1,101,599 nodes 
are separated into four different tissue types: white matter, grey matter, 
cerebrospinal fluid (CSF) and skull.  
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The profiles of the falx cerebri and tentorium cerebelli were carefully sculpted, 
by reassigning elements from the CSF, grey matter and white matter sets based on 
the geometry observed in coronal, sagittal and transverse MRI scans. The maxi-
mum thickness was two elements (2.66mm) in the falx cerebri and three elements 
(3.99mm) in the tentorium cerebelli, with at least 4 nodes shared between mem-
brane elements. The thickness used is essential in effectively transmitting bending 
forces under dynamic simulations and is hence modelled slightly thicker than the 
approximate membrane thickness of 2mm [25]. The increased thickness is taken 
into consideration by scaling the Young’s modulus of the membranes in order to 
obtain the correct bending rigidity.  

Fig. 2. a) The cranial cavity showing the falx cerebri and tentorium cerebelli; b) same view of the 
structures interior to the skull in the FE model; c) a frontal view of the membranes depicting the 
tent-like profile of the tentorium cerebelli. 

The material data of the different tissues in the model were taken from [26]. 
The properties for the introduced Falx Cerebri and Tentorium Cerebelli are 
taken from literature and listed in Table 1. All materials are modelled as linear 
elastic, except the white and grey matter, which are modelled as hyper-viscoelastic 
(Neo-Hookean with Prony series viscoelasticity). 

Table 1. Material properties for Falx Cerebri and Tentorium Cerebelli 

Tissue Density 
ρ [kg/m3] 

Bulk modu-
lus K [Pa] 

Short term shear 
modulus G0 [Pa] Reference 

Falx Cerebri 1130 4.47E+7* 4.62E+6* 
[25] Tentorium 

Cerebelli 1130 1.32E+7* 1.37E+6* 

* Scaled to account for difference in thickness

A fixed boundary condition is used at the head/neck junction. This allows us to 
capture the rotational motion of the brain, as a free boundary condition would lead 
mostly to linear motion of the head model. The pulse load shown in Fig. 3b is ap-
plied to the mid-frontal area of the model in the anterior-posterior direction as a 
uniformly distributed load over an area of 1,556 mm2, shown in Fig. 3a [7].  

a) b) c) 
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a) b)  

Fig. 3. a) The loaded area of the skull. b) Load pressure profile. 

Analysis Procedures 

Natural Frequency Extraction 

The Natural Frequency Extraction step is used to extract the system’s modes to be 
used for the subsequent modal dynamic analysis. The high-performance SIM-
based linear dynamics architecture is enabled in this step to ensure that element 
and material damping factors related to the viscoelastic properties are taken into 
account in the subsequent modal dynamic analysis. The eigenvalues and the 
eigenvectors of the biomechanical head system are extracted in this procedure 
using the Lanczos eigensolver coupled with the SIM architecture [27]. The 
number of modes used in modal superposition is important in defining accurate 
dynamic response.  

Transient Modal Dynamic Analysis (TMDA) 

The TMDA is used to investigate the shear wave interference process under 
various input loading profiles and compare the solution to the non-linear explicit 
dynamic analysis (EDIM). 

While the natural frequency extraction step is computational expensive, finding 
the solution using TMDA is a relatively inexpensive procedure; therefore it is easy 
to investigate the behaviour for different loading pressure profiles. 

Explicit Dynamic Integration Method (EDIM) 

The EDIM is used to investigate the shear wave interference while accounting for 
non-linear effects. It is ideally suited for large model analyses of high-speed 
dynamic events such as those seen in TBI. As the equations of motion for the body 
are integrated using the explicit central-difference integration rule, a large number 
of small time increments are used [27]. The integrity of the results generated using 
this method relies on the specified time increment being smaller than the stability 
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limit for the operator. This is based on the highest element frequency in the model, 
and the associated dilatational speeds observed.  

Results 

The extracted modes in Table 5 shows that there is an approximate 10 Hz 
frequency span between the first 3-4 modes and thereafter, increasingly smaller 
increments until a span of 45 modes from 15-60 yields a frequency range of 
approximately 36 Hz. This is a by-product of the intricately complex structure of 
the head system. Although there are many complex modes of vibration, each 
contributing somewhat to the overall response, only a subset of these modes 
dominate the response of the system under impact loading. This information is 
contained within the modal effective mass in each kinematic direction, being 
dependent on the modal participation factors and the modal generalised mass of 
the system [27]. 

Table 2. Natural frequencies of the head model and the identified modes of interest. 

 
The effective mass in each kinematic direction for the first 60 modes is highest 

in the x direction, representing approximately 83% of the mass of the system. The 
y and z global kinematic directions return 38% and 63% respectively. The number 
of extracted modes is not sufficient to adequately represent the system under a 

Mode Number Frequency [Hz] 
Effective Mass 

X-Component Y-Component Z-Component 

1 47.948 6.91E-02 0.42853 1.0844 
2 59.661 3.21E-07 6.87E-05 1.86E-04 
3 60.981 0.176 4.91E-03 1.59E-02 
4 69.707 2.71E-02 9.25E-04 7.81E-04 
5 70.873 2.05E-02 0.12154 0.23524 
6 74.858 9.30E-03 8.29E-04 1.25E-04 
7 76.616 9.98E-03 1.30E-02 5.13E-03 
8 79.156 0.40435 6.81E-03 5.64E-03 
9 80.436 1.69E-03 1.70E-03 3.82E-02 

10 81.132 0.11532 5.24E-04 2.16E-03 
11 83.051 0.26127 5.31E-04 1.34E-02 
12 83.685 1.34E-02 1.09E-02 4.75E-04 
… … … … … 
60 124.41 4.94E-07 3.62E-03 3.62E-04 

Total 2.3304 1.0706 1.7602 

Percentage of Total Mass 83% 38% 63% 
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large range of transient inputs or impulse excitation. Approximately 90% of total 
mass in each kinematic direction is required for this. 

The first natural frequency of the system is 48 Hz, contributing more than a 
third of the modal effective mass in the z direction. In fact, of particular interest in 
the y-z plane are the first and fifth modes for the first 60 modes. Lateral movement 
is dominated by modes 3, 8, 10, 11, 13 and 15. Figure 15 shows some of the asso-
ciated mode shapes.  

1  

3 

5 

Fig. 4. The mode shapes (left column) viewed from the mid-sagittal, mid-transverse and mid-
coronal cross sectional cuts of the brain. Regions of largest generalised displacements are red. 

It is important to note however, that due to the rigidity of the skull, stress waves 
travel much faster here than in the soft tissues of the head. This is well represented 
by the spherically converging shear waves from impact loads, as a result of indi-
rect loading induced by structural dynamical deformation of the skull. Hence, di-
rectionality of impacts may not be as significant in this study. 

Regions of potential interference in brain tissue are identified by analysing per-
pendicular cross sections (sagittal, coronal and transverse planes) of the 3D gener-
alised displacements and finding areas with the highest displacements. The maxi-
mum principal strains for these areas and the comparison with the coup site is 
presented in Table 3.  

The dynamic response is mapped graphically through time in Fig. 5 to under-
stand wave propagation behaviour. It is observed that wavefronts are not only 
converging from the outer boundary regions of the brain, but also propagating 
outwards from the falx cerebri. This creates two converging shear waves in each 
hemisphere, the focal points of which are the regions identified in the first mode – 
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the mid points of each parietal lobe. The maximum principal strain time history at 
these two locations is shown in Fig. 6. The dominant frequency is ~48Hz, corre-
sponding to the first natural frequency. Strain amplification is observed, over a 
longer duration in the right hemisphere. The input load area slightly favours the 
left hemisphere, which explains the difference in local maximums. 

Table 3. Regions of interest identified from the mode shapes 

Movement Mode Region Description Max. Prin-
cipal Strain 

% difference 
from Coup 

Anteri-
or/Posterior 

1 

Left parietal lobe 0.21 -19%

Right parietal lobe 0.21 -19%

Mid cerebellar region 0.26 0%

5 Inferior region of the frontal lobe 0.33 +27%

Lateral 

3 Mid-parietal lobe, directly right of falx cerebri
insertion 0.34 +31%

8 Cingulate gyrus, close to corpus callosum 0.28 +8%

13 Right temporal lobe 0.15 -42%

Fig. 5. Spherically converging shear waves in both cerebral hemispheres, shown at (a) 6.5ms (b) 
8.5ms and (c) 10.5ms from the EDIM. Red dots denote the first two regions of interest. 

a) b)
Fig. 6. Maximum principal strain responses of a) the left, and b) right parietal lobes. 

Conclusions 

This study successfully identifies regions in the brain which display higher strains 
than the coup and contre-coup sites for a frontal impact to the head. The wave 
patterns are strongly influenced by the falx cerebri and tentorium cerebelli.  
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The use of modal analysis to identify regions of interference is very effective, 
by taking into consideration the mode shapes (in strain and displacement) which 
have strong contributions to the overall response of the system. The TMDA, while 
not accounting for all solution nonlinearities, does provide an indication of inter-
ference effects, as shown by the comparison to the more accurate EDIM solution. 
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Modeling of Bifurcated Tubular Structures for 
Vessel Segmentation 

Haoyin Zhou, Peng Sun, Seongmin Ha, James K. Min, Guanglei Xiong 
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Abstract   Segmentation and geometric modeling of blood vessels from medical 
imaging are important for diagnosis of ischemia and atherosclerosis. Since 
conventional voxel-based methods are slow and unable to incorporate expert 
knowledge, machine learning methods are proposed for segmentation of cardiac 
structures by not only increasing the speed but also learning from the manual 
annotations. However, to our knowledge, all previous learning-based methods 
assume a loose combination of tubular structures and do not account for the 
bifurcation geometry. In this paper, we propose a novel method for construction of 
complex lumen vasculature with a focus on explicit modeling of bifurcations for 
learning-based vessel segmentation. A bifurcation is modeled by using convex 
hulls to join tubular structures guided by centerlines. Subdivision and boosting-
based segmentation are performed to adapt the bifurcation model to the target 
vessel boundaries.  Our experiments show constructed coronary artery geometry 
from CT imaging is not only water-tight but also accurate by comparing to the 
manual annotated ground-truths. 

Keywords: vessel segmentation, bifurcation modeling 

1 Introduction 

Segmentation and geometric modeling of blood vessels from medical imaging is a 
prerequisite for computational analysis of blood flow and wall mechanics [2], 
which facilitates the diagnosis of ischemia and atherosclerosis. Currently, vessel 
segmentation and modeling usually includes two steps: the first step is centerline 
detection; and with the detected centerline [3], the second step is coronary lumen 
and wall segmentation [4]. 

The center line detection methods mostly start with heuristics-based [5][7] or 
learning-based [8] vessel enhancement filtering. Following this, Yang et al 
proposed a data-driven centerline tracing method. Zheng et al's method is not only 
data-driven but also assisted with a prior shape model [9], which achieved high 
accuracy. 
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Conventional voxel-based coronary segmentation methods are useful for the 
delineation of vascular geometry. For example, Wang proposed an automatic 
segmentation method of vasculature that combines level-sets with an implicit 3D 
model of the vessels [10]. Shahzad et al performed lumen segmentation by using 
graph cuts [11]. However, their slow computation speed and inability to 
incorporate expert knowledge limit their wide use. Learning-based coronary 
lumen segmentation methods have been proposed for the segmentation of cardiac 
structures by not only increasing the speed but also learning from the manual 
annotations. For instance, Lugauer et al used a learning-based method to segment 
vessel lumen by using supervised classification [12]. Vessel wall segmentation is 
much less mature, and is primarily performed by global or adaptive thresholding 
[14]. For the machine learning methods, a water-tight base mesh is required as an 
initialization for adaption to the unseen image to be segmented. This requirement 
is difficult for modeling the entire vascular tree, whose topology and connectivity 
vary from patient to patient. Therefore, to our knowledge, all previous learning-
based methods assumed a loose combination of tubular structures and do not 
account for the bifurcation geometry [8] [9] 

In this paper, we propose a novel method for the construction of complex 
lumen vasculature with a focus on explicit modeling of bifurcation modeling 
problem for learning-based vessel segmentation. Compared with those vessel 
decomposition methods after level-sets [15], there are mainly two steps in our 
approach. Firstly, the base mesh of bifurcations is modeled by using convex hulls 
to join extruded tubular structures guided by centerlines. Secondly, subdivision 
and boosting based segmentation of the generated convex hull are performed to 
adapt the model to the target vessel boundaries. Our experiments show constructed 
coronary artery models from CT imaging are in high fidelity by comparing to the 
manual annotated ground-truths. 

2 Structured Coronary Mesh Generation 

Centerlines are widely used to represent the path and connectivity of blood vessels 
including coronary arteries [16]. In order to characterize the geometry of the 
lumen boundary, diameters or cross sectional areas are combined with centerlines 
for the detection of whether any narrowing or stenosis is present. On the other 
hand, unstructured meshes (e.g. Fig. 1(a)) are also used to model vessel surfaces, 
especially for detailed modeling of vascular shape and for generating the fluid 
domain for computer simulations. Both approaches have limitations considering 
the tubular and complex shape of blood vessels. Centerlines with diameter 
information are inadequate to model vessels with asymmetric or noncircular cross 
sections. Although unstructured meshes are excellent for representation of 
complex surface details, it is challenging to handle queries for global topology and 
connectivity. 
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By combining both representations, we propose to model coronary arteries by 
linking centerlines with structured surface meshes, as shown in Fig. 1(b). By 
resampling a given centerline (dense in our case), a list of uniformly distributed 
nodes is generated as centerline nodes, c1,...,cl, and a smoother centerline is 
obtained by finding a spline curve interpolating them. We define a local 
coordinate frame [t,u,v] at each node c using a rotation minimization technique, 
where t is along the tangent direction of the centerline and [u,v] spans a 2D plane 
on the cross-section. The lumen surface is modeled as a structured mesh by 
sweeping through the contours on the 2D planes. Each contour is implicitly 
defined using a list of lumen distances, d1,...dk, from c to the intersections on the 
lumen surface along k radial vectors sampled uniformly on the circumference. 

In our system, we firstly apply the frangi filter [1] to extract the centerlines. 
Then, for each center point c, we search for its lumen distances dk separately by 
using a boosting-based segmentation classifier. Our boosting classifier is trained 
from 119 manually annotated patients' data. 

Fig. 1. Coronary modeling and segmentation. (a) Geometric model of the coronary arteries 
with an unstructured mesh from the level-sets method. (b) The final result of our method: 
geometric modeling of the same arteries by linking the centerlines with a structured mesh. 
The centerline endpoints and bifurcation points (shown in red) are connected by centerline 
edges (shown in blue). 

3 Bifurcation Merging 

      (a)        (b) 
Fig. 2. Bifurcating vessels before and after merging. 
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At bifurcations, as shown in Fig. 2 (a), it is not nature to describe the meshes by 
center lines and lumen distances. Getting smooth meshes of the bifurcations as 
shown in Fig. 2(b), can be seen as merging the bifurcating vessels. Our bifurcation 
mesh generation algorithm includes the following steps: (1) selecting the end-
faces of the vessels; (2) generating the convex hull of the end-faces; (3) 
subdividing and smoothing the convex hull and mesh intersection verifying. These 
steps are working in a loop way until the step no intersecting meshes. Finally, (4) 
boosting-based segmentation is applied to obtain the bifurcation lumen. 

3.1 End-face Selection 

The end-faces are the borders between the tubular vessels and the bifurcation. 
End-faces must be located in appropriate locations relative to the bifurcation point 
on the centerline because it may be impossible to generate the bifurcation mesh if 
it is too close or cannot maintain tabular shape if it is further away. 

Denote there are M bifurcating vessels and each has Ni contour points, 
i=1,2,...M. The contour points are denoted as pij, where j=1,2,...Ni. 

Condition 1: the selected end-faces of an bifurcation should satisfy that all 
points pi'j' should be on the same side of end face i, for all i'≠  i, j' = 1,2,...Ni'. 

Condition 2: 

i i j ic p Z Thresholdh       (1) 

for i = 1,..,M, i'≠ i, j' = 1,2,...Ni'. Where 
iZZ  suggest the unit normal vector of end-

face i; ci suggests the center point of end-face i. 
For any end-face that does not satisfy these two conditions, move it far away 

from the bifurcation center one point at a time on the centerline, until all end-faces 
satisfy these two conditions. 

Condition 1 guarantees that the convex hull exists; and Condition 2 suggests 
the cases that two mostly parallel end-faces are too close to each other should be 
avoided. 

3.2 Convex Hull 

A fast and robust algorithm is proposed in this section to obtain the minima 
convex hull of all M selected end-faces. To generate the mesh, all points pij for 
i=1,2,...M and j=1,2,...Ni should be on the surface of the generated convex hull. 
Hence, it is necessary to avoid the non-convex end-face cases. Our algorithm 
obtains the maximum likelihood circle of all end-faces, the radius ri is obtained 
by: 
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N

      (2) 

where rij is the radius of pij. And the new points generated by ri are denoted as qij, 
i=1,2,...M and j=1,2,...Ni. The convex hull of qij can be easily transferred into a 
hull of pij by replacing the coordinate of the points. 

The general idea of our convex hull generation algorithm is that every line 
segment of this convex hull must have two, and only two adjacent planes. Since 
every line segment qijqij+1 are already included in the end-face i, one more plane 
should be found. As shown in Fig.3, for line segment of end-face i defined by 
points qij and qij+1, find qi'j': 

,argmin ( , ),ij ij i jangle X Y i ii i)                (3) 

where 
1ij ij ij iX q q ZX  and points outside, where Zi is the unit normal vector of 

end-face i; angle(*) suggests the angle between two vectors 

Fig. 3. Geometric relationship used in our convex hull generation algorithm. 

Fig. 4. Convex hulls from M = 3,4,5,6,20 bifurcating tubular objects. 

Fig. 5. The generated bifurcation meshes. 

In most cases, the convex plane includes three points: pij, pij+1, pi'j'. However, 
sometimes when there are more than four points in this plane, the 2D convex hull 
algorithms are employed to generate the contour. 
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After applying this to all line segments, including the new generated line, the 
final convex hull is obtained. As shown in Fig. 4, our algorithm is capable of 
joining any number of tubular objects by generating the convex hull. 

3.3 Subdivision and Laplacian Smoothing 

To make the generated bifurcation mesh editable, it is necessary to subdivide the 
convex hull mesh to add some editable points. Here subdivide each each line that 
connect two end-faces into four sub-segments. 

To avoid low quality meshes, an improved Laplacian method proposed by 
Vollmer [6] is applied to make the generated mesh smooth and nature. Compared 
with conventional Laplacian method, this can avoid the mesh shrink to the center. 

To grantee the generated mesh has no intersection, we introduced the 
algorithms proposed in [13]. If intersection is detected, go to Section 3.1 and use a 
larger Threshold in Condition 2. 

3.4 Boosting-based Bifurcation Lumen Segmentation 

So far, no CT image information is used in the bifurcation part. To adapt the 
model to the bifurcation boundaries, we apply the similar classifier as we used in 
the tubular vessel lumen segmentation. Because the bifurcation mesh does not 
have centerlines and radius, the boundary is segmented along the normal of the 
mesh. 

The bifurcation lumen segmentation classifier is trained on the manually 
annotated bifurcation data, here we use 50 patients' data with totally 244 
bifurcations and over 1 million points. We use some intuitive features, which is a 
25×1 vector includes the CT intensity, intensity · intensity, gradient, 
gradient · gradient, gradient · normal of itself and its four neighborhood points 
along the normal. 

4 Experiment 

Coronary CT angiographic images are used to test our algorithms. To evaluate our 
algorithm, the contracted bifurcations are compared with manually annotated 
ground truths, as shown in Fig. 6. Data from 30 patients are used in our 
experiment. The data were acquired using standard imaging protocol on GE 
discovery scanners. Image volumes may contain 153-357 slices, while the size of 
each slice is the same with 512×512 pixels. For different volumes, the in-slice 
resolution is isotropic and varies between 0.28 to 0.49 mm with slice thickness 
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from 0.30 to 0.63 mm. The average distance between the constructed bifurcations 
to the ground truths is D = 0.299mm. 

Fig. 6. Compared with manually annotated ground truths, the accuracy of our method is 
evaluated. Patients' coronary vessels are segmented and modeled from CT images as shown 
in the first row, the bifurcation meshes are colored according to the error distance (D (mm)) 
between the constructed bifurcations and the ground truths. The distance histograms of D of 
the bifurcation mesh are shown in the second row. The some examples of detailed colored 
maps are shown in the third and fourth rows. The last row is the color map parameters of D 
(mm). Each column represents one patient. 

5 Conclusions 

In this paper, we propose a novel method for construction of complex lumen 
vasculature with a focus on explicit modeling of bifurcation modeling problem for 
learning-based vessel segmentation. Convex hulls are used to join tubular 
structures guided by centerlines. Subdivision and boosting-based segmentation is 
performed to adapt the model to the target vessel boundaries. Our experiments 
show the constructed coronary artery geometry from coronary CT imaging is 
accurate by comparing to the manually annotated ground-truths. Our future work 
includes support for interactive editing of the bifurcation geometry and application 
to other tubular structures, e.g. trachea. 
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Abstract   

Blast induced traumatic brain injury (TBI) has been an affliction of war since 
the advent of militarised explosives and has become even more prominent with the 
resurgence of improvised explosive devices (IEDs). A common injury resulting 
from these blast events is Diffuse Axonal Injury (DAI), a clandestine type of TBI 
often occurring with no external visible symptoms. An voxel based finite element 
model of the human head allows for simulation of trauma mechanisms derived 
from hemispherical surface blast scenarios experimentally determined to have a 
greater than 99% survival rate by Bowen [1]. Coupling with in vivo results per-
taining to DAI thresholds enabled introductory conclusions to be determined about 
the presence of DAI in survivable blast-trauma events. The blast events were sim-
ulated for the TNT mass equivalent of three different IEDs located at varying dis-
tances depending on the predicted survivability of the event. ABAQUS Explicit 
was used to conduct the finite element analysis and the Conventional Weapons 
(CONWEP) Blast Loading interface was used to calculate the hemispherical sur-
face blast parameters. Areas of high strain occurred at the white/grey matter inter-
face and brainstem for all simulations, as would be expected in a typical human 
head response. For the simulations in the lung-damage classification, there was in-
sufficient strain to predict the presence of DAI. Conversely, most of the simula-
tions from the 99% survivability distance produced sufficient strain to suggest 
DAI. Therefore, it was determined that blast events categorised as having a 99% 
survivability demonstrate sufficient strain to suggest at least mild DAI.  

Keywords: Traumatic Brain Injury, Diffuse Axonal Injury, improvised explosive 
devices, voxel based finite element model 
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Introduction 
Traumatic brain injury (TBI) has become one of the leading causes of death 
in the modern world [2] and impacts society medically, socioeconomically 
and emotionally [3]. Blast-Induced Traumatic Brain Injury (bTBI) has dev-
astated military personnel since World War I, cloaked under the misclassi-
fication of shell shock, among other neurological disorders [4]. Recently, 
the necessity for understanding the nature of bTBI has become increasing-
ly prevalent due to the insurgence of Improvised Explosive Devices (IEDs) 
in the Middle East conflicts. The precise mechanism of bTBI continues to 
evade the full comprehension of researchers due to the difficulty in obtain-
ing accurate in vivo results via human experimentation. The nature and 
mechanisms that influence bTBI have been extrapolated from several ani-
mal-focused tests in combination with interpretation of computer-
simulated models and finite element (FE) results. bTBI has become a key 
focus of military studies as the prominence of IEDs in modern combat con-
tinues to threaten the lives of war-fighters around the globe [5]. 

A primary objective of the investigative community is to determine numerical 
thresholds that allow for reasonable prediction of the injuries sustained by an indi-
vidual due to either air or surface blasts. Through analysis of hemispherical sur-
face blast events that are considered survivable on the Bowen survivability curve 
[1], an attempt at predicting the presence of diffuse axonal injury (DAI) under 
primary phase conditions can be established and will serve as a foundation for fu-
ture research in methods of combating this devastating injury. The purpose of this 
study is to assess the prevalence of DAI in IED scenarios by simulating the effects 
of primary phase surface blasts using a voxel-based comprehensive computational 
model of the human head, and comparing the strain values within the brain to test-
ed DAI strain injury criterion. Determination of the presence of DAI in these con-
ditions will serve as a foundation for further study and has potential application 
within life-saving combat technology research. 

Multiple investigations have been performed for air blast scenarios, but only 
few are accounting for the hemispherical blast surface events. Zhang et al. [6] in-
vestigated the influence of blast load dampening via a combat helmet, but only 
considered small explosives in close proximity to the head model, and only for air 
blast events. It was discovered that wearing an Advanced Combat Helmet may re-
duce strain by up to 30%, but these effects were not accounted for in this study. 
Explosive impacts on buildings from surface blasts have been studied in [7]. 
Wang [8] investigated air blast reflection for low mass explosives but primarily 
focused on bridging vein rupture. To the authors’ knowledge, there has been no 
investigation into the hemispherical surface blast influences on producing DAI us-
ing an MRI-resolution head model. 

Blast wave trauma has been categorised into four phases; influence from the 
overpressure waves; collision with shrapnel and flying debris; impact with sur-
roundings from motion induced by blast force; and other factors such as chemical 
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burns or smoke inhalation.  These are labelled as primary, secondary, tertiary and 
quaternary phases respectively [9]. Secondary and tertiary phases are typically 
compared to standard blunt-force induced TBI, whereas primary phase induced 
trauma is synonymous with explosive events. The precise mechanisms by which 
bTBI occurs are still unknown. Grujicic et al. [10] proposes that rotational motion 
and acceleration/deceleration are not applicable in blast-induced trauma scenarios. 
Conversely, an investigation by Dagro et al. [11] supports the notion that rotation-
al loading is relevant to blast events. In addition, Elder [12] discovered injuries 
reminiscent of DAI by exposing live animals to blast pressure events, and attrib-
utes these injuries to rotational acceleration. Other injury mechanisms are hypoth-
esised, including transmission of the pressure waves via vasculature [13].  

Axonal damage, cerebral contusion, and subdural haemorrhaging are 
the three most common forms of mild TBI (mTBI), or concussion as it is 
known in common language [10]. Of these three forms of mTBI, DAI is the 
most difficult to detect by conventional means such as computed tomog-
raphy (CT) scan or magnetic resonance imaging (MRI). DAI occurs when 
excessive stress or strain is applied to the directional axons within the 
white matter of the brain, usually resulting from accelerative and declara-
tive forces caused by impact loads. Areas of particular susceptibility in-
clude the white/grey matter interface, the brainstem and areas around the 
falx cerebri. There is no agreement regarding the mechanical and tissue 
thresholds used for diagnosis of DAI in computational simulations. Exper-
imental data produced by Bain et al. [14] by stretching tissue samples to 
the point at which predicted morphological injury occurred resulted in 
DAI threshold strain values ranging from 0.14 to 0.34, with an optimal 
value of 0.21. This was confirmed via FE analysis by Kleiven et al. [15] 
whom concluded that a max principle strain of 0.21 to 0.26 was indicative 
of DAI through a recreation of both NFL impact events and motorcycle ac-
cidents. Although many thresholds have been calculated via computation-
al simulation, in vitro experimentation on human cadavers and human-
resembling animal tissue samples remains as a strong basis for DAI 
threshold detection. For this reason, the empirical principle strain value of 
0.21 was selected for use in this study. This threshold was applied to the 
results obtained from the FE simulation for multiple blast events to deter-
mine the presence of DAI. 

Methods 

Model and Material Properties 

A finite element analysis was performed to determine the strains caused by blast 
loading within the brain, thereby requiring the use of a computational model of the 
human head. The model used was a 3D-voxel based mesh generated from an MRI 
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scanning of an anonymous human brain by Chen [16]. The FE mesh was 
constructed from hexahedral elements with approximate dimensions of 1.33 mm x 
1.33 mm x 1.30 mm. The model consists of white and grey matter, cerebrospinal 
fluid (CSF) and skull, with material properties derived from Zhang [17]. Custom 
mesh smoothing algorithms were employed by Chen [16] to provide a better 
approximate shape of the anatomical features. 

The falx cerebri and tentorium cerebellum are extensions of the dura fold sepa-
rating the hemispheres of the brain and the cerebellum respectively. The original 
model provided by Chen [16] excluded these anatomical components. Their inclu-
sion was deemed necessary in the simulations in an effort to improve the com-
pleteness of the model and to account for their effect on the system response to 
pressure waves. In addition, several studies empirically determined and reinforced 
the notions regarding the structural rigidity provided by the falx cerebri and tento-
rium cerebellum under cranial impacts: Smith et. al. [18] demonstrated that the 
falx cerebri provides high strains due to impairment of motion of the hemispheres 
and that the tentorium cerebellum can act as a physical obstruction over which ax-
ons can tear, subsequently leading to DAI. In addition, Zhang et al. [19] identifies 
the falx cerebri’s strong effect on rotational loading and subsequently, the innocu-
ous effect under translational loading. The falx cerebri and tentorium cerebelli 
were created by reassigning elements from the CSF, grey matter and white matter 
sets based on the geometry observed in coronal, sagittal and transverse MRI scans 
(Fig. 1). The maximum thickness was two elements (2.66mm) in the falx cerebri 
and three elements (3.99mm) in the tentorium cerebelli, with at least 4 nodes 
shared between membrane elements. The thickness used is essential in effectively 
transmitting bending forces under dynamic simulations and is hence modelled 
slightly thicker than the approximate membrane thickness of 2mm [20]. The in-
creased thickness is taken into consideration by scaling the Young’s modulus of 
the membranes in order to obtain the correct bending rigidity.  

The properties for the introduced Falx Cerebri and Tentorium Cerebelli are tak-
en from literature and listed in Table 1. All materials are modelled as linear elas-
tic, except the white and grey matter, which are modelled as hyper-viscoelastic 
(Neo-Hookean with Prony series viscoelasticity). 

Table 1. Material properties for Falx Cerebri and Tentorium Cerebelli 

Tissue Density 
ρ [kg/m3] 

Bulk modu-
lus K [Pa] 

Short term shear 
modulus G0 [Pa] Reference 

Falx Cerebri 1130 4.47E+7* 4.62E+6* 
[20] Tentorium 

Cerebelli 1130 1.32E+7* 1.37E+6* 

* Scaled to account for difference in thickness

A fixed boundary condition was imposed at the stem of the head-spine juncture 
for this model. This boundary condition allows the introduction of rotational mo-
tion of the head, which is a key aspect of producing the strains hypothesised to in-
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duce DAI. Chen [16] has analysed the effects of both the fixed and free boundary 
conditions via comparison with measurements published by Nahum et al [21]. He 
determined that the fixed boundary condition provides a reasonable approximation 
of the rotational acceleration undertaken by the head due to frontal impacts.   

a) b)
Fig. 1. a) Mid-transverse section of the head model. b) The introduced falx cerebri and tentorium 
cerebellum. 

IED Simulation 

ABAQUS Explicit was used for simulating the explosive events. Two methods of 
applying the blast loading are available in ABAQUS 6.13: interaction creation 
with manual amplitude input or use of the Conventional Weapons Effects in Blast 
Loading (CONWEP) system. The CONWEP system has been used, which calcu-
lates a reasonable blast wave inclusive of positive and negative impulses with the 
input of a TNT equivalence mass and impulse time. Also, the auto-calculation of 
reflection pressure is especially relevant in this analysis where hemispherical sur-
face blasts are the primary blast loading mechanism. 

The guerrilla nature of homemade IEDs makes them crude and variant in their 
constituents. A “typical” homemade IED is often constructed of 98% am-
monium nitrate and 2% fuel oil [22]. In combat environments IEDs are 
usually made of either 105 mm or 155 mm artillery shells which cause 
more damage to vehicles and convoys, with the 155 mm shell being more 
explosive than the 105 mm [23]. Their explosive power is characterised by 
equating their mass specific energy to a TNT mass equivalence [22]. This is 
achieved through the multiplication of an empirically determined equivalency fac-
tor to determine a prediction for expected overpressure and impulse time of a non-
TNT based explosion [24]. For ammonium-nitrate/fuel oil, 105 mm artillery shell, 
and 155 mm artillery shell, the TNT mass equivalents are 4.5, 2.4 and 7.3 kilo-
grams respectively. This scaled comparison to an equivalent mass of TNT based 
on energy output allows for direct comparison between explosives of various con-
stituents. 

Using a combination of iterative equations derived by Kingery and Bulmash 
[25] and the Hopkinson-Cranz distance scaling equation (Eq. 1), the appropriate
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standoff distance Z can be calculated to achieve the given blast parameters includ-
ing blast overpressure and positive impulse time: 

 
       (1) 

 
where R is the actual distance between the detonation and contact points (m) 

and W is the TNT mass equivalence for the explosive (kg). Table 2 details these 
calculated values and the corresponding blast parameters. Values were chosen to 
be positioned on the lung damage threshold and 99% survivability curve [1]. 
These points were chosen as they demonstrate situations where people exposed to 
IED blasts would feel the impact, then presumably proceed with their duties with-
out receiving medical attention. It is these scenarios that pose the greatest risk for 
patients induced with DAI as symptoms of concussions may exist but the full ex-
tent of the injury may be underestimated, possibly leading to death. It should be 
noted that no 2.4 kg explosion was analysed for the 99% survivability instance. 
This is because a standoff distance of 1.67m was required, thereby placing the 
detonation point above the ground. This reclassifies the explosion as an air blast 
and hence is not in the scope of this study. 

Table 2. Simulated blast parameters calculated for IED scenarios 

Survivability Curve TNT Mass Equivalent 
[Kg] 

Standoff Distance 
[m] 

Reflected Overpressure 
[kPa] 

 2.4 3.439 506.92 

Lung-damage 4.5 4.123 549.20 

 7.3 5.329 420.01 

99% 
4.5 2.340 2999.13 

7.3 3.413 1557.96 

 

Results 

The impact pressures, computed at the site of initial impact with the skull, for the 
various standoff distances and TNT mass equivalences are displayed in Figure 2. 
Consistent with the survivability curves and expected impacts, the impact 
pressures depended on the standoff distance and TNT mass equivalence, with the 
4.5kg at 2.340m having the quickest and highest magnitude impact pressure and 
the 7.3kg at 5.329m conversely having the most delayed and smallest impact 
pressure. All pressure responses have jagged fluctuations, but the general 
gradients are similar to those predicted for the ideal Friedlander wave. This is 
most likely a result of intracranial pressures destructively and constructively 
interfering with the impact pressure as the results were probed from the impact 
site on the skull. The sites of impact also varied according to the distance of the 
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blast suggesting that ABAQUS Explicit has appropriately determined the pressure 
impact angles since the closer explosions impacted the head lower on the model. 
The 2.4kg explosion at 3.439m was the only impact pressure that developed a 
significant negative value, and then increased again above zero. This response was 
not as expected and could have been caused by a number of potential factors 
including the particular site of impact or an abnormality in the reflection of 
pressure waves within the head. Also, for all results, the pressure was analysed 
directly from the response of the skull, so an oscillating pattern is produced in the 
impact pressure. This is negligible since the main blast parameter of interest is the 
peak impact pressure induced. 

 
Fig. 2. Impact pressure acting on the skull for various TNT mass equivalencies and standoff dis-
tances.  

For each of the blast events the response of the model was analysed to 
determine peak areas of strain (Figs. 3 and 4). It was noticed in all simulations that 
high regions of strain were present at the white/grey matter interface and the 
brainstem. This correlation demonstrates a realistic reaction from the model as one 
may see in head trauma events [26].  

For the Lung Damage simulations the maximum strains were generally lower 
than the DAI threshold, indicating that DAI would generally not be induced by 
such explosions. For the 99% survivability simulations there is good indication 
that DAI will result from such events. 
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Fig. 3. The strain induced by explosions located on the Lung Damage iso-curve at areas of max-
imum principle strain in the brainstem and white/grey matter interface. 

 
Fig. 4. The strain induced by explosions located on the 99% Survivability iso-curve at areas of 
maximum principle strain in the brainstem and white/grey matter interface. 

Conclusions 

Finite element simulations of different IEDs, for varying standoff distances ac-
cording to the 99% survivability and lung damage iso-curves, were performed us-
ing the CONWEP surface hemispherical blast calculations in ABAQUS. The re-
sponse of the brain was analysed and the principle strains compared to an 
experimental threshold 0.21 which was produced from empirical investigations for 
the presence of DAI. High regions of strain occurred at locations of the white/grey 
matter interface and brainstem for all simulations, both areas where DAI will typi-
cally be induced. 
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Strains lower than the threshold were computed for the lung damage curves, 
suggesting that DAI would not be present in these events. Significantly higher 
strains were computed for the 99% survivability events, strongly suggesting that at 
least mild DAI would be present in these events. This suggests such an analysis 
could be used for reasonable prediction of this injury in combat zones without the 
need for intrusive or expensive medical imaging. 
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