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Abstract Breast cancer is the leading cause of cancer-related death in women
worldwide. Diagnostic imaging such as 3D magnetic resonance imaging (MRI) is
acquired with patients positioned in the prone orientation with arms either above
their heads or by their sides. However, treatment procedures such as surgery are
performed in the supine position. Differences in the skeletal pose, and the large
deformations that the breast undergoes during repositioning, make it challenging to
localise breast lesions during treatment procedures. To address this issue, biome-
chanical modelling workflows have been proposed to simulate breast tissue defor-
mation following patient repositioning. A key step in these workflows is the auto-
mated construction of personalised anatomical models to describe the geometry of
the individual's breast tissues. Previous workflows have focused on modelling the
soft tissue boundaries near the breast region without considering the individual’s
pose and skeletal joint positions. The proposed workflow uses a human body model
as a template to obtain an initial estimate of each individual’s shape before perform-
ing local refinement. The workflow is being designed to model data from multiple
poses, and it incorporates skeletal information enabling more realistic boundary
conditions to be applied during breast biomechanics simulations.
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1 Introduction

Breast cancer is the leading cause of cancer-related death in females, affecting
one in every ten women worldwide [1]. During treatment, the patient usually lies in
a supine position, whereas the diagnostic image of the breast is typically acquired
in a prone position. The relative change in gravity loading can cause significant
deformation in the breast tissues, creating ambiguity for the surgeon in locating tu-
mour positions. To address this issue, biomechanical models have been developed
to simulate breast deformation due to gravity and changes in pose. One of the key
steps for biomechanical simulation is to construct a personalised anatomical model
that provides descriptions of the geometry of the breast tissues. Many studies have
focused on creating personalised anatomical models to represent the soft tissue
boundaries of the breast (e.g.,[2] — [6]). However, existing biomechanical models
typically consider only the region surrounding the breasts without considering the
individual’s skeletal pose. The joint positions of the arms and shoulders need to be
considered as they influence the shape and stretch level of the pectoral muscles upon
which the breast sits. During the imaging process, the subject’s arm and shoulder
can be placed in a variety of positions, significantly altering the shape of the pectoral
muscles, and impacting the position and deformation of the breast. Articulated hu-
man body models are used in the computer graphics field to generate realistic-look-
ing 3D human body surfaces. These parameterised human body models were trained
using large datasets to model the variation in body shapes and pose-related defor-
mation on the skin surface. They are widely adopted for their robustness, controlla-
bility, flexibility, and efficiency. Some of the most successful human body models
include SCAPE [7], SMPL [8], and STAR [9]. Numerous studies [10] [11] have
been conducted to register such human body models to 3D scans of the entire human
body. However, current human body models rely on very naive and anatomically
unrealistic representations of the human skeleton, in contrast to anatomically accu-
rate multi-body skeletal models that are widely adopted in the field of biomechanics
analysis [12] —[14].

This manuscript aims to describe an automated workflow for the generation of
personalised anatomical meshes of the torso that incorporates anatomically accurate
models of the skeleton for biomechanics simulations. A multi-body model is devel-
oped and personalised using the OpenSim software [15] to model the relevant skel-
etal joints for each individual. We employ an articulated human body model as the
template model to obtain an initial estimate for the skin surface. The initial estimate
is then locally refined to capture more details on the skin surface. The workflow
assimilates 3D medical data from multiple positions.

Incorporating skeletal modelling into the workflow enables personalised bound-
ary conditions to be applied during breast biomechanics simulations. The con-
structed meshes also provide a basis for statistical shape analysis of the torso in
multiple poses.



2 Methods

This section will describe the methods used to generate personalised anatomical
surface meshes of the skeleton and the skin surface of upper torso. Subsection 2.1
will introduce the data used to test and evaluate the workflow. Subsections 2.2 and
2.3 will introduce the personalisation process of the skeleton and skin surface mod-
els, respectively.

2.1 Image Acquisition and Pre-processing

This workflow was tested and evaluated using MR images in a dataset acquired by
the Biomechanics for Breast Image Group at The Auckland Bioengineering Institute
(ABI). The full dataset consists of high resolution (I mm?) T1- and T2-weighted
MR images that were acquired from 110 healthy participants in prone and supine
positions at the University of Auckland’s Centre for Advanced Magnetic Resonance
Imaging (CAMRI). Landmarks on relevant skeletal joints were manually placed on
the MR images (See Table 1 for a complete list of the identified landmarks and their
definition). Meshlab software was used to generate triangulated surface meshes
(hereinafter referred to as data meshes) from the manually segmented skin surface
boundaries observed in the prone MR images.

Landmarks Definition for manual identification

Sternal notch ~ The most superior, anterior point at the centreline of the manubrium

SC The most anterior, superior point at the medial end of the clavicle
AC The most posterior, lateral point on the acromion of the scapula
GH Centre of the humeral head

Table 1. A list of manually identified landmarks in the MR image and their definition.

2.2 Skeletal Model Personalisation

A multi-body model of the torso developed in OpenSim [14] was used as the
template model for the skeleton. The model has 23 degrees of freedom, parameter-
ised on the sternum, sternoclavicular (SC), acromioclavicular (AS), glenohumeral
(GH), humeroulnar and ulnoradial joints. The template model is in a standard ana-
tomical position, which is defined as standing erect, looking forward, with the feet
close and parallel to each other, the arms at the side and the palms facing forward
[16].



Personalisation of the template model is achieved through scaling each compo-
nent (e.g., each bone) of the model to match joint landmark positions identified in
the MR images (See Table 1) for a given subject. The optimal scaling factor was
computed using Scipy version 0.24 [17]. Specifically, the objective function quan-
tifying the distance error between joint landmarks is defined as
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where s is the vector of scaling parameters in each of the x, y, and z axes to be
optimised, and ||Zi_p (s)|| is the Euclidean distance between the corresponding it

joint centre point on the template model and MRI data in the p' body position, N is
the number of joints and P is the number of body positions (e.g., prone or supine).
Once the scale parameters were identified, the joint angles were subsequently de-
termined using the inverse kinematic solver provided in the Python API of OpenSim
4.0 [15]. The objective function to minimise is the energy defined as

Ey = ||]MR1 _]o(¢)||F
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where ¢ are the joint angles in the template model with respect to the standard an-
atomical position, J, and J,g; are matrices related with the joint positions in the
template model and MRI data, respectively. Specifically, J = [jT, ..., j&], where
the 3-element vector j, represents the 3D coordinates of the ™ joint. In our work-
flow K = 7. The optimised joint angles describe the pose of the individual seen in
the MRI (see Fig. 1).



Fig. 1. The personalised multi-body skeleton model generated using the pro-
posed workflow for a volunteer in the prone position.

2.3 Skin Surface Model Personalisation

To deal with the complex geometry of the human skin surface in multiple poses,
an articulated human body model was used as a template model to generate an initial
estimate of the geometry of the skin surface. The template model used in this work-
flow is a female version of the Skinned Multi-Person Linear model (SMPL) model
[8]. SMPL is an articulated human body model that uses joint angles € and body
shapes descriptors § as input parameters and generates triangulated skin surface
mesh of the human body based on population information (See Fig. 2a). The fitting
process follows the concept of the Functional Automatic Registration Method
(FARM) [11].

The personalised multi-body model estimated in the previous section is used to
constrain key joint positions of the SMPL model. The template model was linearly
scaled and aligned to match the position of shoulder joints in SMPL and those de-
fined in the personalised skeleton model. We modified this model to only include
vertices from the neck to the base of the thorax and upper sections of the arms. Note
that the multi-body model has two joints to represent the kinematic movement of
shoulders (glenohumeral and acromioclavicular), whereas SMPL uses only one
joint. Thus, the midpoints of glenohumeral joints and acromioclavicular joints in
the multi-body model were considered as the shoulder joint for optimisation.



(b)

Fig. 2. SMPL (a) is employed as the template model in this workflow, where red points are the
estimated joint positions. (b) is the data mesh generated from segmented MR data using Meshlab
software, where white dots are landmarks placed on the nipples.

The template model was non-rigidly registered to the data mesh generated from
the manually segmented skin surface boundaries observed in the prone MR image
(see Section 2.1), obtaining an initial estimate of the individual’s shape. The regis-
tration process can be described as follows. To initialise the process, left and right
nipple landmarks were placed on the data mesh (see Fig 2b) and template model.
Specifically, the landmarks are placed on the most anterior point of each breast.
Dense correspondences between the template model and the data mesh were com-
puted using the functional map approach. The goal is to compute a point-wise map

N ->M

(3)

where operator 7 maps points on the data mesh domain IV to the corresponding
points on the template model domain M (See Fig 3a and b). Functional map ap-
proach uses real-valued functions defined on each shape, such as the eigenfunctions
of its Laplace-Beltrami operator, to obtain a more compact representation of a map
between two shapes. The original map 7 can be reconstructed from the functional
representation. We refer the readers to the references [11] and [18] for the details.
The map 7 will constrain the non-rigidly fit of the template model to the data mesh.

(a) (b)



Fig. 3 Dense correspondences between the (a) data mesh and (b) template model. Computed cor-
respondences are displayed in the same colour.

The initial estimate of the skin surface is obtained by minimising the following
energy:

E(B,0) = wyEy(B,0) +w,E(B,0) +wgEg(B)

(4)

with respect to the shape f and pose 8 parameters in the SMPL model that instanti-
ate the template model domain M. Here, E}; is the term measuring the alignment
error between surface vertices of the two shapes

Ey = |1X5e — (X,

(5)

where X, are the vertices on the template model, and (X ) are the corresponding
points identified by the mapping n. Similarly, E; represents the discrepancies be-
tween landmarks on the model and data

Ey = [y — Lyl|,

(6)

where Lj; and Lj, are the positions of landmarks placed on the model and data
mesh, respectively. Ep is defined as

Eg = |IBI|’
(7)

which regularises the shape parameter. Regularisation weights, w, in the workflow
are settow, = 1, w, = 1, and wg = 0.05.

Until this step, all optimisations are with respect with SMPL parameters § and 6.
Since SMPL can only model human body shape within the span of its training set,
the model is at our disposal, and further local refinement can be applied directly. In
this workflow, an as-rigid-as-possible (ARAP) algorithm [19] is employed in con-
junction with a nearest-neighbour energy to get the locally refined mesh.



3. Result and Discussion

Personalisation of the multi-body skeleton model was applied to MR images of
12 individuals in the dataset. To quantify the fitting accuracy, we define an error
metric as the distance between the modelled joint positions and the landmarks
placed in the MR images. Applying the multiple pose optimisation method results
in a mean error of 2.4 mm + 2.3 mm.

The main source of error is the uncertainty incurred in manual identification of
landmarks in MR images. Repeatability in landmark identification was investigated
by selecting the landmarks for each volunteer ten times. The order of landmarks
was randomised and performed over two sessions. Standard deviation is used to
measure the uncertainties of landmark placement. The uncertainties in the place-
ment of landmarks are 2.3 mm, 1.9 mm, 2.6 mm, and 0.9 mm for the sternal notch,
SC, AC, and GH joints, respectively. The uncertainties in the landmark placement
process could lead to significant inaccuracies during the personalisation of the
multi-body model. The accuracy of kinematic models depends on how well the un-
derlying model matches the subject’s anthropometric data. However, previous stud-
ies have shown that the linear scaling method has a higher error when compared to
statistical shape modelling scaling [20].

Due to the lack of manually segmented data and poor visibility of key joint land-
marks in the MR image, the personalisation of skin surface was applied to MR im-
ages of three individuals in the dataset. See Fig 4a and 4b for an example of the
fitted mesh. Hausdorff distance the skin surface segmented from the MRI and the
fitted skin surface was used to quantify the performance of the workflow. The mean
Hausdorff distances for three individuals are 5.1 mm, 4.9 mm, and 7. 8mm. The
mesh shows noticeable poor fits around the sternum region because the template
model being employed in the workflow was trained using clothed people in upright
positions. The workflow is also sensitive to data partiality, as missing parts may
cause shape matching between the data and the template to fail.

(a) (b)

Fig 4. Refined mesh from the (a) anterior view and (b) superior view, where points are the seg-
mented point clouds from a MR image acquired in the prone position.

The proposed workflow for the skin surface is automatic and requires minimal
manual intervention. The functional map algorithm matches correspondences on the



template model and the data without regarding the individual’s body size, pose, and
orientation. The template model patches small holes and fixes minor artefacts on
the segmented data. This approach also uses population information on female body
shapes, since SMPL is the first human body model that used the entire CAESAR
[21] dataset for training. However, one of the key limitations of this workflow is
that the training data of SMPL (as well as other human body models in the field)
consists of scanned people who are wearing tight clothing and standing in an upright
position. This makes the template model unable to capture anatomical details on
bare breasts when the individual is in the prone position, leading to poor initial es-
timates and will subsequently destabilise the process of local refinement.

Although the approach is automatic, the correspondence matching algorithm em-
ployed in the workflow is vulnerable to any change of topology. A major limitation
of this workflow is the partiality of data, where the data observed in the MR image
is a subset of the template model. The inconsistency of the field of view causes
difficulties in the model fitting process. For example, a template model with the
neck included may not be suitable for those data without the neck region segmented
since the correspondences on the neck region do not exist. Moreover, shoulder joints
are only visible in less than 40% of the MR images in our dataset due to limited
field of view. Extending the field of view would allow more skeletal joint to be
identified, providing more constraints for skin surface mesh construction.

In the future, a mapping algorithm that specialises in matching partial shapes will
be deployed. A partial map enables the alignment of whole-body models without
considering the completeness of the input data. Furthermore, the robustness of this
workflow will be quantitatively assessed by fitting it to a larger cohort. It should be
remarked that the SMPL representation of joints does not accurately represent the
anatomical structure of the human skeleton. A better mapping between the multi-
body and human body models to align the template models is within the scope of
future works. Alternatively, the 1D multi-body skeleton model can be replaced with
a more representative statistical shape model, potentially providing a more accurate
estimate of joint positions compared to the linear scaling of the multi-body model.

4. Conclusion

This study proposed a workflow to generate skin surface meshes of the female
torso from medical imaging. In contrast to previous works which mainly focused
on regions near the breast without regarding the skeletal pose, this workflow is be-
ing designed to account for multiple poses. Additionally, the workflow incorporates
anatomically accurate models of the skeleton. The constructed skin surface meshes
provide a basis for statistical shape analysis of the torso in multiple poses.
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