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Abstract  Identifying and localising breast tumours is challenged by differing 
patient orientation between clinical examination and treatment procedures. 
Individual-specific, physics-driven models of the breast can help clinicians track 
and co-locate information between medical images acquired from different 
modalities but are unsuitable for real-time intervention. We present a surrogate 
machine learning model that predicts the breast's mechanical behaviour under 
gravity loading in near real-time. A high-fidelity finite element (FE) model 
simulating material point displacements d of the breast, using a reference geometry 
and combinations of a constitutive material parameter C1 and the relative orientation 
of the breast with respect to gravity g, was used to generate synthetic ground truth 
data. The best-trained surrogate model produced an error of 0.13 mm ± 0.03 mm 
with respect to the L2-norm of the FE model's displacement field in model 
validation. This model can predict the material point displacement of the breast in 
clinically relevant orientations (e.g., prone and supine) with a maximum root mean 
squared error of 1.04 mm (SD 1.08 mm). The computations took around 2.0 s to 2.1 
s, up to 82.5 times faster than the equivalent FE models on a CPU. The proposed 
approach is therefore promising for developing augmented reality tools to aid with 
real-time clinical navigation of soft tissues. 

1  Introduction 

Approximately 2.3 million women are diagnosed with breast cancer, and another 
685,000 women die from the disease annually [1]. Early detection and surgical 
removal of tumours help improve patient outcomes [2]. Tumour positions are 
identified and analysed across medical images acquired from X-ray mammography, 
magnetic resonance imaging (MRI), and second-look ultrasound (US) (Figure 1). 
However, patient orientation differs between these imaging modalities and surgery, 
complicating the matching and localisation of lesions, limiting successful tumour 
excisions. In such cases, patients must undergo re-operation which ranges from 19 
% to 22 % of patients who underwent breast-conserving surgery in New Zealand 
[3], [4], and across the world [5]–[8]. Re-operation is associated with increased 
morbidity, treatment duration, cost of care and worsened cosmetic outcomes [5].  
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Fig. 1  Breast cancer diagnostic images acquired using (a) mammography in the standing position, 
followed by (b) MRI in the prone position and (c) US in the supine-tilted position. Image a 
(Monkey Business - stock.adobe.com),  Image b (siemens.com/press), Image c (Luisandres - 
stock.adobe.com). 

Such clinical challenges have motivated the development of physics-driven 
computational models to help clinicians accurately track and co-locate lesions 
during procedures. These models use the finite element method (FEM) to predict 
breast tissue deformation from prone (orientation in MRI) to supine (orientation in 
surgery) under gravity loading [9]–[11]. However, this approach is computationally 
expensive for simulating large nonlinear deformations [12]. State-of-the-art FE 
breast models take at least 30 seconds to solve [13], which makes clinical translation 
difficult.  

Surrogate machine learning models, commonly referred to as surrogate models, 
can rapidly mimic the behaviour of FE models and achieve similar accuracy to the 
FE model [14]. Martinez-Martinez (2017) [15] used a decision tree, extremely 
randomised trees, and random forest methods to train surrogate models that predict 
whole breast deformation under compression in less than 0.15 s. Mendizabal (2020) 
[16] trained models with U-Nets to predict ultrasound-probe-induced displacements 
of breast tissue lesions in about 3 ms. However, both models were trained offline 
for specific geometries and loading conditions, hence re-training was required for 
any changes to the mechanical problem.  

We have developed a surrogate modelling framework for cardiac mechanics to 
avoid the need for re-training [17]. An intrinsic learning domain was created using 
diffeomorphic mapping to preserve the geometry's topology, ensuring that the 
surrogate model was application-agnostic. The validated model, trained using 
Siamese neural networks, took 0.7 s to predict the left ventricular displacement 
during passive filling (62 times faster than the FE model) and approximately 9 s to 
estimate one constitutive parameter of the model [18]. This work documents the 
application of this surrogate modelling framework in rapidly predicting the material 
point displacement of a personalised biomechanical model of the breast in multiple 
orientations subject to gravity loading. Note that material point displacement refers 
to the displacement of nodes in a FE model and their equivalents in the surrogate 
model.  

The manuscript is structured as follows. Section 2 details the development of the 
surrogate model, and the training and performance evaluation results. Section 3 
presents the predicted material displacements, and the model's accuracy and 
efficiency compared to the equivalent FE model results. Section 4 discusses the 
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findings and the model's future developments. Section 5 provides concluding 
remarks.  

2  Methods 

This section presents a sequential modelling framework (see Figure 2) to generate 
and benchmark surrogate models with a chosen high-fidelity model. In particular, 
we used a FE model of the breast under gravity loading published elsewhere [11] 
as the high-fidelity model. This model's predictions demonstrated good agreement 
(RMS error of 0.64 mm) with the scanned surface of a deformed phantom in 
experimental validation studies [9], [19]. 

 
Fig. 2  The surrogate models are trained using synthetic ground truth data from a FE model that 
simulates the material point displacement of the breast for a given constitutive material parameter, 
orientation with respect to gravity, and reference geometry. Several network architectures were 
used for training, and we selected the network that yielded the surrogate model with the lowest 
validation error with respect to the L2-norm of the FE model's displacement field. This model's 
prediction accuracy and time compared to the FE model were evaluated to assess its performance.  

Ground truth data for training the surrogate model was obtained from the above 
FE model implemented in OpenCMISS [21]. An automated imaging analysis 
workflow [22] used the 1 mm3 T2-weighted MR image of a healthy 49-year-old 
volunteer, acquired in the prone position at the University of Auckland's Centre for 
Advanced Magnetic Resonance Imaging (CAMRI), to construct an individual-
specific anatomical model of the torso. The breast geometry was segmented from 
the torso and discretised into a FE mesh for the simulation (Figure 3) [23].  

The breast domain was approximated with cubic Lagrange elements, as 
presented in Figure 3. The FE model assumes that breast tissue is incompressible, 
isotropic, and homogeneous, and has a material density of 900 kg∙m–3 [9], [19], [20]. 
The mechanical behaviour of breast tissues was simulated using a neo-Hookean 
hyperelastic strain energy function W = C1 (I1 – 3), where C1 is the constitutive 
material parameter, and I1 is the first invariant of the right Cauchy-Green 
deformation tensor [24]. Homogeneous Dirichlet boundary conditions were applied 
on the outer rib boundary to model the rigid attachment between the breast and the 
anterior chest wall [25], [26].  

Synthetic breast displacement data d = [dx, dy, dz] was generated from the high-
fidelity FE model using a reference geometry (with coordinates x, y, z), C1 and 
relative orientation of the gravity force g = [gx, gy, gz] m∙s-2. The orientation of g is 
defined in spherical coordinates (Figure 4) (Equation 1). 688 mechanical setups 
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were evaluated using the FE model, and each sampled 3,545 material points in the 
domain, yielding a total of 2,438,960 samples for the dataset (Table 1). These 
samples were partitioned as 80 % for training, 10 % for testing and 10 % for 
validating the surrogate model. 

 
Fig. 3  a) The breast model was segmented from the anatomical model of a torso, and the cranial, 
caudal, sternal and axilla surfaces were defined as the model boundaries. b) The breast geometry 
is the FE domain of interest, and the outer rib boundary is the posterior surface of the breast [23].  

 
Fig. 4  a) Orientation of gravity (g) with respect to the breast was defined in spherical coordinates, 
where r is the magnitude (9.81 m∙s-2), Φ is the elevation angle, and θ is the azimuth angle. The 
combination of Φ = 0o and θ = 0o represents the gravity force orientation for the supine breast, 
while Φ = 180o and θ = 0o represent the gravity force orientation for the prone breast. b) The arrows 
indicate the g orientation where Φ varies between -150o and 180o, and θ was fixed at 0o to simulate 
the torso rotation about the cranio-caudal (z) axis direction. Note that the breast model point cloud 
has been downsampled 100 times for illustration purposes in this figure. 

 �𝑔𝑔𝑥𝑥,𝑔𝑔𝑦𝑦,𝑔𝑔𝑧𝑧�  =  9.81 [𝑐𝑐𝑐𝑐𝑐𝑐 𝛷𝛷, 𝑠𝑠𝑠𝑠𝑠𝑠 𝛷𝛷 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃, 𝑠𝑠𝑠𝑠𝑠𝑠 𝛷𝛷 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 ] (1) 

Table 1. Sampling of the mechanical parameters used to generate the synthetic dataset. 

Parameter Step Range Samples 

C1 (kPa) 0.1 [0.8, 5.0] 43 

Φ (degrees, o) variable [-150, 180] 16 

https://www.zotero.org/google-docs/?brKL9y
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The surrogate model was trained using a Siamese neural network [27] and 

implemented in TensorFlow, an open-source machine learning library [28]. One 
network trains the domain nodes (non-boundary nodes) to predict the material point 
displacement, whilst the other trains the boundary nodes to enforce the Dirichlet 
boundary condition. The network architecture consists of hidden dense layers 
containing neurons and a single final output layer. All neurons are connected to 
those on the successive layer to increase the network's capacity. The output layer 
has three neurons to predict dx, dy and dz, respectively. The error between the 
ground truth dataset and the surrogate prediction is computed using a loss function 
that combines the L2 norm error of the domain and boundary networks (Equation 
2), where u is the predicted displacement, 𝑢𝑢�  is the FE model displacement, B is a set 
of points in the domain or boundary, and the subindexes b and d denote points on 
the boundary or the domain, respectively. A penalisation factor α applied on the 
boundary network helps to enforce the boundary conditions. Weights of the trained 
network are obtained when the loss function is minimised. 

 
𝐿𝐿 =  � �|𝑢𝑢𝑑𝑑 −  𝑢𝑢�𝑑𝑑|�

2
𝑢𝑢𝑑𝑑 ∈ 𝐵𝐵𝑑𝑑

 + 𝛼𝛼 � �|𝑢𝑢𝑏𝑏 −  𝑢𝑢�𝑏𝑏|�
2

𝑢𝑢𝑏𝑏 ∈ 𝐵𝐵𝑏𝑏

 (2) 

The network was trained using the ADAM algorithm [29] with network weights 
of 0.5 and 0.9 respectively, a learning rate of 0.01 and a batch size of 8000 samples 
during 200 epochs at maximum. A patience parameter of 20 stops training when the 
validation loss function does not improve after 20 epochs. The network was trained 
with nine different architectures to investigate the sensitivity of training accuracy to 
network architecture. These networks contain 2, 3, and 4 identical layers with 32, 
64, and 128 neurons each. The network architecture with the lowest error during 
validation (see Equation 2) was selected as the best-trained network for further 
training of the surrogate model.  

The trained and validated surrogate model was used to predict the material point 
displacement of presented cases. The prediction error was quantified using the root 
mean squared error (RMS error) (Equation 3) between the FE model results and the 
surrogate model predictions. Secondly, the prediction speed of the surrogate model 
was compared against the solution time for the FE model using the average wall 
clock time, and the distribution of such times over repeated experiments was 
analysed.  

 
𝜀𝜀 =  

∑𝑁𝑁
𝑖𝑖=1 �(𝑢𝑢𝑖𝑖,𝑥𝑥 − 𝑢𝑢�𝑖𝑖,𝑥𝑥)2 + (𝑢𝑢𝑖𝑖,𝑦𝑦 − 𝑢𝑢�𝑖𝑖,𝑦𝑦)2 + (𝑢𝑢𝑖𝑖,𝑧𝑧 − 𝑢𝑢�𝑖𝑖,𝑧𝑧)2 

𝑁𝑁
 (3) 
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3 Results  

Here, we showcase: (1) the neural network architecture that best trained a surrogate 
model using synthetic data from the FE model; (2) how accurately this surrogate 
model predicted the material point displacements compared to the synthetic data; 
and (3) the relative times taken to perform the task. 

The surrogate model was trained using nine different Siamese neural network 
architectures to find the network that achieved the lowest prediction error (see Table 
2). The model was trained five times with each architecture on an NVIDIA Tesla 
V100 GPU. The mean and standard deviation of validation error was reported, 
alongside the training time for each architecture. Preliminary findings show that the 
best–ranked surrogate model was trained with a network architecture of 3 hidden 
layers and 32 neurons per layer (lowest validation error of 0.13 mm ± 0.03 mm), 
and model training took approximately 3155 s ± 60 s (between 51 minutes and 54 
minutes). 

Table 2. Prediction errors of surrogate models trained using Siamese neural networks with a 
varying number of hidden layers and neurons per hidden layer.  

Architecture  
(layers x ni) 

Mean ± SD validation error 
(mm) 

Mean ± SD training time 
(s) 

2 x 32 0.31 ± 0.06 2663 ± 110 

2 x 64 0.21 ± 0.06 2632 ± 98 

2 x 128 0.27 ± 0.10 2715 ± 105 

3 x 32 0.13 ± 0.03 3155 ± 60 

3 x 64 1.27 ± 0.26 1171 ± 168  

3 x 128 1.43 ± 0.60 1414 ± 982 

4 x 32 1.15 ± 0.56 1842 ± 1051 

4 x 64 0.92 ± 0.77 2420 ± 1175 

4 x 128 1.14 ± 0.19 1390 ± 164 

We used the best-trained surrogate model to predict material displacements of the 
breast for clinically relevant orientations, i.e. gravity force representing the prone 
and supine orientations. Figure 5 demonstrates the ability of the surrogate model to 
predict material point displacements for a breast in the prone and supine positions. 
We used C1 values of 1.0 kPa and 5.0 kPa to demonstrate the model's ability to 
predict a variety of nonlinear deformation fields, and the associated prediction 
errors. These predictions are compared quantitatively to the FE model results in 
Table 3. Compared to the supine orientation, the surrogate model's performance 
seems to improve with large C1 values and gravity in the prone orientation. The 
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prediction that incurred the largest possible error (RMS error of 1.04 mm [SD 1.08 
mm]) was the 1.0 kPa case with the breast in the supine orientation with respect to 
the force of gravity.  
    The FE and surrogate models were executed using an 11th Gen Intel Core i7 CPU 
at 2.30 GHz. As shown in Table 4, the surrogate models were approximately 70 to 
82.5 times faster than the FE framework for simulating breast deformations for the 
soft models (C1 = 1.0 kPa), and about 37 to 41 times faster for stiff models (C1 = 5.0 
kPa).  
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Fig. 5  Material point displacement field prediction and RMS error with C1 values of 1.0 kPa and 
5.0 kPa for breast models in the a) prone and b) supine orientations. The surrogate model's 
predictions had smaller errors at the outer rib boundaries and the areas surrounding the nipple, and 
were more prominent for the softer models with C1 = 1.0 kPa. The largest prediction errors were 
located around the shoulder regions (maximum error of 7.73 mm in the prone orientation for 1.0 
kPa. and 9.50 mm in the supine orientation for 1.0 kPa).   

Table 3. Mean displacements and displacement ranges for the prone and supine gravity-loading 
orientations computed using FE and surrogate models of the breast. The RMS errors for the 
surrogate model predictions (compared to the FE models) are also reported to showcase the ranges 
of errors involved. 

Model Metrics Prone orientation Supine orientation  

C1 = 1.0 kPa C1= 5.0 kPa C1 = 1.0 kPa C1= 5.0 kPa 

FE  Mean 
displacement 

(mm) 

3.21  0.62 3.16 0.62 
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Displacement 
range (mm) 

[0, 37.2] [0, 7.2] [0, 38.4] [0, 7.3] 

Surrogate Mean 
displacement 

(mm) 

3.0 0.58 2.6 0.42 

RMSE ± SD 
(mm) 

0.70 ± 0.68  0.19 ± 0.18 1.04 ± 1.08 0.30 ± 0.29 

Displacement 
range (mm) 

[0.01, 35.7] [0.01, 7.3] [0.00, 36.2] [0.01, 6.7] 

Table 4: Average wall clock time for solving breast models with C1 values of 1.0 kPa and 5.0 kPa 
in the prone and supine gravity-loaded orientations.   

Model Prone simulation time (s)  Supine simulation time (s)  

C1 = 1.0 kPa C1 = 5.0 kPa C1 = 1.0 kPa C1 = 5.0 kPa 

FE  154 ± 11  80.0 ± 1.7 152 ± 4  82.6 ± 1.6 

Surrogate  2.40 ± 0.02 2.36 ± 0.02  2.37 ± 0.02 2.37 ± 0.02 

4 Discussion 

This manuscript presents the development and training of a surrogate model to 
predict breast tissue displacement under different orientations with respect to 
gravity. We generated synthetic data using a FE model of the breast implemented 
in OpenCMISS, and used these data to train, test and evaluate the surrogate 
modelling approach. We analysed 688 biomechanical FE models of the breast, with 
different tissue stiffnesses and gravity loading orientations, yielding ~2.4 million 
samples. We chose C1 ∈ [0.8, 5.0] kPa at 0.1 kPa intervals, as the breast model 
underwent significant deformations for this range of stiffnesses. Gravity force 
angles Φ were sampled between -150o and 180o to represent rotations about the 
cranio-caudal axis, with sample points that were clustered about the poles (Φ = 0o, 
180o) and comparatively sparse about the equator (Φ = ±90o) of a unit sphere [30] 
(Figure 4b). Future work could consider setting the probability of placing an 
arbitrary point proportional to the region's area on the circular cross-section to place 
more points around the equator [31]. 

We reported errors observed during validation for surrogate models trained using 
the nine architectures reported in Maso Talou (2020) [17]. In that case, a 4 x 64 
architecture achieved the lowest error (0.044 mm ± 0.029 mm), whereas in the 
present study, a 3 x 32 architecture performed best (0.13 mm ± 0.03 mm) (Table 2). 
The use of a wider, deeper network may have led to overtraining of the model, as 
variations in breast deformations due to variations in gravity loading are generally 

https://www.zotero.org/google-docs/?PqEYnj
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less complex than cardiac deformations, and the present study used significantly 
less training data than the cardiac problem (~ 6 million samples). To confirm this in 
the future, the training step could be repeated with more data fed to the network to 
test whether the higher-capacity networks can improve the training performance. 
We could also increase the number of epochs and the patience parameter to ensure 
comprehensive model training. An intrinsic breast domain for training has not yet 
been considered - we could consider using a rectangular domain for the breast 
topology to check for training performance improvement.  

The surrogate model's prediction accuracy was better for the stiffer models 
(Table 3). The large nonlinear deformations for the soft breast models (maximum 
of 37.2 mm for C1 of 1.0 kPa) were computationally expensive and challenging to 
solve using FE modelling. Nevertheless, the surrogate modelling prediction errors 
were within an average of 1.04 mm (SD 1.08 mm) of the FE model results, which 
is promising for such large deformations. Similarly to Martinez-Martinez [15], 
predictions of the proposed model fall within the 5 mm error range accepted 
clinically, whereas Mendizabal's validation studies on a breast phantom averaged a 
target registration error of 6.2 mm [16]. The large prediction errors associated with 
the deformations in the shoulder region near the axilla boundary are a potential 
concern. Unlike previous works [25], [32], the axilla boundary was not fixed for the 
simulation as we assumed, for this study, that it does not significantly affect the 
deformation of the breast region. However, these errors are exaggerated for an 
extremely low C1 and are less concerning as C1 increases (Figure 5).  

The surrogate model was around 70 to 82.5 times faster at computing mechanics 
of the softer models than the FE model. The speed-up factor reduces to 37 to 41 
times for the stiffer models, because surrogate models are agnostic to elastic 
properties. In contrast, FE models are not (solving FE models with softer properties 
is generally more computationally intensive). The observed speed-up factors are 
comparable to [17], which produced surrogate model predictions 62 times faster 
than equivalent FE models. However, the cardiac model solved within 0.7 s, 
whereas these breast models took about 2.0 s to 2.1 s. A possible reason for this was 
that training could be improved by gathering more data or using an intrinsic domain, 
as discussed earlier. Another contributing factor is that the surrogate cardiac model 
was executed on a GPU, not on a CPU like the breast model. The proposed surrogate 
model's speed is slower than similar studies of breast mechanics [15], [16]. 
However, it was noted that the previous models were designed for different loading 
conditions, and used different machine learning techniques. To the best of our 
knowledge, no similar model has been implemented for gravity loading of the 
breast.  

Future aims of this work are to use the proposed surrogate modelling approach 
to estimate breast tissue constitutive parameters rapidly, and subsequently validate 
the framework using a silicone gel breast phantom. This will build on related studies 
for identifying the mechanical properties of soft materials [11], [33], [34]. These 
steps are essential for the development of a software platform [35] that integrates 
physics-driven computational modelling with augmented reality technology [36], 
[37] and state-of-the-art model visualisation techniques [38] to align diagnostic 
images with 3D holograms of biomechanical models. This platform could 
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eventually extend our automated clinical image analysis workflow [22] to provide 
clinicians with real-time navigational guidance during breast cancer imaging and 
treatment procedures (Figure 6). 

 
Fig. 6  A proposed augmented reality platform will leverage an automated clinical workflow for 
breast cancer image analysis. The workflow builds personalised biomechanical models of the 
breast from diagnostic MRI and visualises breast tissue displacements in near real-time during 
clinical procedures performed in the supine position. Some images were obtained from Romaset - 
stock.adobe.com.  

5 Conclusion 

We presented a surrogate modelling framework that predicts material point 
displacement of a personalised breast model under gravity loading and varying 
constitutive material parameters in about 2.0 s to 2.1 s. The surrogate model was 
trained with 688 FE models representing different biomechanical setups, and 
achieved errors of 0.13 mm ± 0.03 mm compared to the FE model solutions. 
Surrogate models predicted the material point displacements about 70 to 82.5 times 
faster than the state-of-the-art FE model, and the maximum prediction errors 
averaged at only 1.04 mm (SD 1.08 mm) for soft models of the breast. This suggests 
that the proposed surrogate model can simulate mechanical deformation very 
efficiently. It also represents a promising development toward applying real-time, 
personalised biomechanical modelling to help improve breast cancer diagnosis and 
treatment practices.  
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