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Abstract.   Abdominal Aortic Aneurysms (AAA) are a symptomless condition and 

are common in the geriatric population (65< years old). It is imperative for clini-

cians to identify regions of the AAA with greatest risk of rupture as well as overall 

rupture risk. A more dependable, patient specific approach based on computational 

biomechanics which could prove useful. This research paper aims to identify and 

evaluate the extent of user variability during semi-automatic segmentation provid-

ing the geometry for a model. We used patient data obtained from Fiona Stanley 

Hospital in Perth, Western Australia, in the form of CT scans at 80% through the 

cardiac cycle. Individual segmentations were performed by four analysts of similar 

experience with a repeat segmentation conducted four weeks later. Segmentations 

by different analysts produced different stress results and therefore affected the rup-

ture potential prediction. Segmentations by the same analyst were not exactly re-

producible. We recommend more stringent guidelines to guide analysts while uti-

lizing an automated segmentation process by edge detection may also prove to be 

feasible.  
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1. Motivations 

An Abdominal Aortic Aneurysm (AAA) is clinically defined as the permanent and 

irreversible dilation of the abdominal region in the descending aorta. Aneurysm 

names are characterised by their location, for this project we have investigated an-

eurysms originating below the renal arteries and are appropriately referred to as 

infra-renal AAA’s which can be illustrated in Figure 1 below. This cardiovascular 

disease is a symptomless condition that is often discovered by coincidence when 

undertaking other clinical scans such as bladder screening, ultra-sonographies, or 

other radiography tests. In many cases, the discovery only takes place after rupture 



 

 

has taken place, hence it’s given nickname “The Silent Killer” (Vascular 2022). 

Rupture of the aneurysm is lethal, and even with swift medical attention and surgical 

intervention, the long-term post-operative mortality rates remain high between 30-

45% (De Bruin et al. 2010, Greenhalgh et al. 2010). On a global scale, AAA’s cause 

approximately 200,000 deaths per year highlighting its severity (Naghavi and al 

2015). The disease is more likely to occur if you have a family history of cardiovas-

cular conditions as well as the typical lifestyle related factors consisting of high 

cholesterol, elevated blood pressure, obesity as well as excessive alcohol and to-

bacco consumption (Wanhainen, Verzini et al. 2019). Studies have determined that 

males are more susceptible to incidence, however, females have a higher risk of 

rupture (Aggarwal et al. 2011, Wanhainen et al. 2019).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The current gold-standard AAA rupture risk assessment method involves maximum 

diameter and diameter growth rate (Wanhainen et al., 2019). These criteria prove to 

be unreliable, as AAAs with diameters smaller than 5.5cm have been shown to rup-

ture, with rates between 7% and 23%. (Darling et al., 1977) While larger AAAs 

have remained stable (Droz et al., 2017; Greenhalgh et al., 2004). This poses an 

issue; these guidelines rely on a one size fits all approach which has little physio-

logical basis, as patient-specific information is unaccounted for. This points to the 

need for a more reliable indicator of AAA rupture risk that incorporates patient-

specific biomechanics (Joldes et al., 2016, Polzer et al., 2020, Vorp & Raghavan, 

2000). Our overall objective is to develop and verify a non-invasive, patient-specific 

biomechanics-based rupture risk assessment for AAA. It is these shortcomings as-

sociated with diameter-based assessments of AAAs that provided the initial moti-

vations for this research direction. 

Fig. 1. Infra-renal AAA. Normal and healthy aorta (L). Dilated aortic aneurysm 

(R). Extracted from: (HealthDirect 2020). 



 

This paper specifically aims to investigate and examine the effects of inter- & intra-

user segmentation variability on the reproducibility of results from computational 

biomechanics models. To achieve this, a qualitative visual comparison with associ-

ated wall stress values will be observed. 

2 Methods 

Software utilised was constructed by Intelligent Systems for Medicine Laboratory 

(ISML) at The University of Western Australia, Biomechanics based Prediction of 

Aneurysm Rupture Risk (BioPARR) available from: https://bi-

oparr.mech.uwa.edu.au 

2.1  Patient Demographic 

The abdominal CT scan of one patient was obtained from Fiona Stanley Hospital in 

Perth, Western Australia for analysis. This CT scan was captured at 80% of the 

cardiac cycle, which corresponds to the diastolic phase in the abdominal aorta, as 

there is comparatively less noise in this portion. The patient’s systolic and diastolic 

blood pressure was also recorded and will be used to calculate patient specific mean 

arterial pressures (MAP). Ethical approvals were obtained from both Fiona Stanley 

Hospital and the University of Western Australia. 

2.2  Image Segmentation 

All image segmentations to extract the AAA wall geometry were performed in open 

source segmentation software, 3D Slicer (Fedorov et al., 2012). Four analysts per-

formed two segmentations each, with segmentations conducted four weeks apart. 

Stress analysis was performed on each geometry to assess intra- and inter-analyst 

differences in simulation results resulting from differences in segmentations. Semi-

automatic segmentation process is detailed below. 

ROI creation and lumen segmentation. We first refined the region of 

interest (ROI) of the AAA. This was achieved through cropping the CT images from 

the renal arteries to the iliac bifurcation. The voxels of this ROI were then made 

isotropic at 0.625mm to simplify smoothing. A threshold was applied to differenti-

ate the lumen from surrounding tissue. As this threshold included areas of the spine 

and surrounding arteries, manual removal was required to ensure the labelmap only 

contained the aortic lumen. The resulting labelmap was Gaussian smoothed with a 

 factor of one.  

 

https://bioparr.mech.uwa.edu.au/
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AAA segmentation. The AAA including lumen was separated from the 

surrounding tissue through user-interpreted semi-automatic segmentation in the 

ROI. Using the FastGrowCut (Fedorov et al., 2012) module in 3D slicer, the AAA 

including lumen was separated from the surrounding tissue throughout the ROI. 

However, this model had some inaccuracies which had to be manually corrected to 

ensure the selected region is representative of the AAA. The resulting labelmap was 

Gaussian smoothed with an appropriate standard deviation, σ, of two to ensure the 

surface is optimal for the meshing algorithm without removing important AAA fea-

tures. 

AAA wall extraction. A blood masked label is created, which is the lumen 

label shrunk by 4 pixels. This blood masked label is subtracted from the AAA label 

previously created to obtain the AAA wall label. The resulting label is manually 

checked for errors and corrected. A 3D surface model of the AAA wall is created 

using the ModelMaker module in 3D slicer, with 100 iterations of Laplacian 

smoothing and the decimate field set to 0.1. This model can be viewed in Paraview 

– an open source, multi-platform data analysis and visualisation application (Ahrens 

et al., 2005). A visual process of this extraction can be seen below in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

2.3  Wall Thickness Specification 

AAA wall thickness is an important factor affecting the stress magnitude within the 

wall. However, accurate determination of wall thickness from medical images re-

mains problematic due to low image resolution and poor soft tissue contrast. Lead-

ing to inaccurate and unreliable wall thickness measurements from medical images. 

This is why previous authors implemented a constant AAA wall thickness in their 

studies (Truijers et al., 2007; Vande Geest et al., 2006). Therefore, a constant wall 

thickness of 1.5mm is used here to ensure more reliable comparison of intra and 

inter-user segmentation differences on AAA wall stress. This constant wall 

(a) (b) 

Fig. 2. AAA wall extraction - (a) CT image of AAA wall segmentation viewed in sagit-

tal plane; (b) 3D label reconstruction of AAA wall. Viewed in 3D slicer. 



thickness is applied by AAA rupture risk prediction software, BioPARR (Joldes et 

al., 2017). 

2.4  AAA Geometry Creation 

The following steps are automated by BioPARR. The AAA model created in 3D 

slicer contains elements of different sizes and poor aspect ratios, which will be prob-

lematic when creating the AAA wall and intraluminal thrombus (ILT) inner & outer 

surfaces. So, the surface mesh of the AAA model is re-meshed using mesh 

resampling software ACVDQ (Valette et al., 2016). Then, a custom command line 

interface (CLI) 3D slicer module is used to generate the AAA wall and ILT surfaces 

from the resampled geometry. The three surfaces generated are the external and 

internal AAA surface, and the internal ILT surface. Thickness of the ILT is com-

puted to ensure it has a minimum thickness of 1mm. Local AAA wall and ILT 

thicknesses are used to compute the mesh element size ensuring the wall thickness 

can be represented by two layers of elements.  

2.5  Mesh Generation for a Finite Element Model  

Meshing of the AAA wall and ILT surfaces are performed using open source mesh-

ing software, Gmsh (Geuzaine & Remacle, 2009). The surfaces are first meshed 

using the previously generated element size information. End surfaces are then gen-

erated between the external and internal AAA wall, and the internal AAA wall sur-

face and ILT, to ensure that the surfaces of the geometry are closed and watertight. 

Using the previously generated element size information, a tetrahedral volumetric 

mesh is created throughout the geometry. Tetrahedral elements were selected as 

they better represent complex geometries, such as the bifurcations commonly found 

in AAAs. Very small tetrahedral elements are generated near the edges of the ge-

ometry to maintain geometry accuracy. While element size is increased in the 

thicker areas of the AAA wall and middle of the of the ILT to reduce element count 

and therefore computational cost of the finite element analysis. Figure 3 is an ex-

ample mesh which illustrates the range of element sizes encountered and its distri-

bution. 



 

 

2.6  Finite Element Model Creation 

The previously created volumetric mesh files of the AAA wall and ILT are used to 

generate input files for commercial finite element software, Abaqus (Abaqus/CAE 

User’s Manual, n.d.), using a custom CLI 3D Slicer module. The input files contain 

the AAA wall and ILT meshes as parts, on which loads, and boundary conditions 

can be applied. Three loading scenarios are generated, which includes ILT pressure, 

Wall pressure and No ILT. These scenarios are represented in Figure 4 below. Only 

results of the ILT pressure scenario will be presented, as this most closely resembles 

in vivo conditions. The load is the mean arterial pressure determined from patient 

specific systolic and diastolic blood pressure. While the boundary conditions are 

that the AAA is tethered superiorly and inferiorly at the renal arteries and iliac bi-

furcation respectively to simulate in vivo conditions.  

 

 

 

 

 

(a) (b) (c) 

Fig. 4. Loading scenarios used in BioPARR pipeline (a) ILT pressure; (b) Wall pressure; (c) 

No- ILT. 

 
Fig. 3. Generated volume mesh with two layers of AAA wall. Minimum of two elements 

on ILT wall with larger element sizes inside ILT. Inner layer (red), outer layer (grey). 



2.7  Finite Element Analysis 

BioPARR calls on ABAQUS to perform finite element analysis of the previously 

created scenarios, following the procedure of Joldes et al (2016). As the geometry 

extracted from the CT image is the AAA deformed under patient specific blood 

pressure, the stress within the AAA wall balances the blood pressure load in that 

deformed configuration. Therefore, the computed stresses depend on geometry and 

load, but only very weakly on patient specific wall material properties as demon-

strated in (Joldes et al 2016, Miller and Lu, 2011). In essence, results of (Joldes et 

al 2016, Miller and Lu 2011) demonstrate that an AAA seen in a deformed config-

uration is approximately a statically determinate structure. This means the stress 

within the AAA wall balances the blood pressure load, while only being very 

weakly dependent on patient specific wall material properties. BioPARR ensures 

the deformed AAA geometry is unchanged under realistic blood pressure load by 

specifying an aortic Young’s modulus of 100 MPa.  

Residual stress incorporation. According to the uniform stress hypothe-

sis, residual stress arises from the continual remodelling of arteries, and works to 

make stress distribution within the vessel wall more uniform under normal condi-

tions (Fung, 1991). To incorporate residual stresses, the previously extracted max 

principal stress is averaged over the AAA wall thickness (Joldes et al., 2018). This 

is performed for each node on the AAA wall surface to extract the max wall stress 

under the uniform stress hypothesis. 

99th percentile max principal stress. After extraction of max principal 

wall stress, the 99th percentile max principal stress is calculated via MATLAB. The 

99th percentile is an arbitrary number used to remove any inaccurate peak stresses 

due to meshing artefacts (Speelman et al., 2008). These 99th percentile values will 

be used to compare intra and inter-analyst variability. 

2.8  Evaluating Intra- & Inter-analyst Segmentation Variability 

To evaluate the differences in inter-analyst segmentation, all four analysts individ-

ually segmented one patient, Patient 34, as a control. The completed segmentations 

followed the same protocols defined in 2.2 to generate geometry and compute wall 

stresses. The maximum principal stress of each geometry is extracted, from which 

the peak and 99th percentile max principal stresses are computed and graphically 

visualized in Matlab and Paraview. These stress values allow comparison of each 

geometry, its segmentation, and their effects on computed AAA wall stress, which 

may be clinically significant. Two sets of data per analyst was obtained, as each 

analyst performed the process four weeks apart. From these two sets of data per 

analyst, the intra-analyst segmentation variability and its effects on computed stress 

can be assessed. The segmentations were input to BioPARR to compute AAA wall 

stress. The wall stress was used as a metric to compare the effects of segmentation 

variability arising from the same analyst on the same patient. 



 

 

3.  Results 

Fig. 5. Stress field contour plots of patient 34 on the same scale for each user. Attempt one (top) 

and second attempt (bottom). E34-1 has a significantly higher stress field than the other models. 

Regions of high stress are localized to high curvature areas that are similar across all geometries, 

although their stress values are different. All models viewed in Paraview. 
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Fig. 6. Percentile plot of maximum principal stresses for 1st segmentation of patient 34.  Relative 

variability in stress values between users. 99th percentile values for T34 = 0.2256 MPa, P34 = 

0.2282 MPa, J34 = 0.1417 MPa and E34 = 0.2669 MPa.  
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Fig. 7. Percentile plot of maximum principal stress for 2nd segmentation of patient 34. Maximum 

value is T34 at 0.168MPa. There still exists a relative difference in the stress values between users. 

99th Percentile values for T34 = 0.2156 MPa, P34 = 0.2548 MPa, J34 = 0.1682 MPa, and E34 = 

0.1416 MPa.  



 

 

3.1  Inter-user Segmentation 

Tables 1 & 2 present results of patient 34 from segmentations by four different an-

alysts. The peak 99th percentile and average maximum principal stresses are pre-

sented along with the number of nodes per geometry. From these tables we can 

appreciate a difference of 0.125MPa between the greatest and lowest 99th percentile 

maximum principal stresses. For segmentation 1, the 99th percentile stresses di-

verged from the average by 23.79% for E34, 34.28% for J34, 5.84% for P34 and 

4.64% for T34. Interestingly from the percentile plots of Figures 6 & 7, graphically, 

there is a larger spread of inter-analyst results in the first segmentation than is shown 

in the second segmentation. Figure 5 presents regions of high wall stress of the 

AAA, which are all localized to the same regions for all analysts. These regions of 

high stress are localized to the high curvature areas across all geometries despite 

their stress value differences. 

 

Table 1. Peak 99th percentile and average maximum principal stresses of the first inter-analyst 

segmentations. Number of nodes contained in the geometry are also presented. Percentage differ-

ences are calculated relative to the means of each metric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Peak 99th percentile and average maximum principal stresses of the second inter-ana-

lyst segmentations. Number of nodes contained in the geometry are also presented. Percentage 

differences are calculated relative to the means of each metric. 

3.2  Intra-user Segmentation 

Between Tables 1 & 2 and Figures 5-7 we are also able to observe the results the 

two segmentations conducted four weeks apart. Peak 99th percentile and average 

maximum principal stresses are presented along with the number of nodes. The 

largest differences in 99th percentile stresses were of E34 and J34, of which de-

creased by 30.67% and 8.55% respectively. While P34 and T34 only exhibited small 

relative stress differences at 5.51% and 2.27% respectively. The stress percentile 

plots of Figures 6 & 7 demonstrate similar patterns for distribution of wall stress 

over percentiles for all four analysts. However, E34 and J34 presented large stress 

differences in segmentation two compared to one, while P34 and T34 remained very 

similar. Figure 5 also illustrates that high stress locations remain the same for both 

segmentations of E34 and J34, whilst the stress magnitudes differ considerably. Al-

ternatively, P34 and T34 exhibit similar stress locations and stress magnitudes. 

4.  Discussion 

 

The CT images that were segmented had voxel sizes of 0.625mm cubed. By nature, 

CT imaging has difficulties capturing and visualising low-contrast structures like 

soft tissue. As the AAA is primarily made up of and surrounded by soft tissue, iden-

tification of the AAA compared to surrounding tissue may vary among users. As-

suming an uncertainty of two pixels on each edge, there is a potential difference of 

up to 2.5mm in model generation. While this may seem like a small value, it is 



 

 

important to consider that 3D-CT images contain a stack of 2D images which will 

compound on the uncertainty of each slice.  

 

Considering that the generated 3D model is crucial for the results, it can be observed 

from Figures 5-7 that there is variability among users. This variability can cause 

influential differences in the resulting regions of wall stress. Additionally, the team 

decided to test if there was intra-user variability. After four weeks from the initial 

model generation of patient 34, the team conducted another segmentation of the 

AAA from patient 34. The results from all four analysts are illustrated in Figure 5 

which shows the presence of intra-user variability for each team member. It is im-

portant to note that all team members are of relatively equal experience and fol-

lowed the same protocol when producing segmentations. This further reinforces the 

need to have a standardised way to segment AAA models in patients to eliminate 

the variability that can arise from both inter- & intra-user sources.  

 

There are limitations to this study, however. The first being that the computed stress 

values demonstrated here cannot be validated by realistic, in vivo results, as no ex-

perimental results of AAA wall stress are available. Therefore, no conclusions can 

be made regarding the accuracy of the results obtained here. The wall stresses com-

puted here are also potentially unreliable in AAA rupture risk prediction, as no pa-

tient specific wall strength metric is available to compare local wall stresses and 

strengths. The assumption of a constant, 1.5mm AAA wall thickness used here pre-

sents as a limitation, as it does not represent patient-specific AAA geometry. Inac-

curacies of the computed stress in the AAA wall will arise, as maximum principal 

stresses are proportional to the wall thickness (Miller et al., 2019). This study does 

verify however, the presence of user variability. Whilst differences between the 99th 

percentile maximum principal stresses were minimal (less than 8.55%) for three out 

of the four analysts, one analyst (E34) reported a 30.67% difference between com-

puted stresses. In addition to this, two out of the four analysts reported slight 

changes in the locations of high stress on the AAA wall.  

4.1  Canny Edge Detection – Future Implications 

Edge detection algorithms are widely used in image processing and image analysis, 

especially when identifying objects within an image and preserving structural infor-

mation about object boundaries. Most edge detection algorithms only require para-

metric user input to detect object boundaries and can be used as an alternative to 

semi-automatic free-hand segmentation such as FastGrowCut within 3D Slicer. Alt-

hough FastGrowCut has the advantage of providing users with an interactive seg-

mentation method that is effective and efficient over other manual methods, the 

method requires large amounts of user input by manually drawing seeds and back-

ground pixels to guide the segmentation (Zhu et al., 2014) and may be a contributing 

factor to the intra- and inter-analyst variability. As such, edge detection algorithms 



such as Canny edge detection (Canny, 1986) where users are required to input pa-

rameters for Gaussian smoothing and thresholding instead of manual segmentation 

may reduce variability. Figure 8 below shows a sample of the aortic wall detected 

by the Canny edge detection algorithm available in MATLAB. This method has 

been applied to previous work on detecting and measuring AAA wall thickness 

(Huynh & Miller, 2022) and has the potential to be used as guidance in the form of 

object edge boundaries for image segmentation, reducing intra- and inter-analyst 

variability. Further advancements into edge detection needs to be investigated, with 

Canny edge detection being a simple, yet effective example of its application in 

medical imaging analysis. 

 

 
(a) 

 
(b) 

Fig. 8. Example of Canny edge detection for guiding image segmentation of the abdominal aortic 

aneurysm from CT scans. (a) Original axial CT slice (b) CT slice with Canny edges (in white). 

5. Conclusion 

This study verifies the workflow of AAA rupture risk prediction software, Bi-

oPARR, by analyzing nine patients. The stresses computed by BioPARR and 

Abaqus present high stresses in region of large curvature. BioPARR was utilized to 

analyze the inter- and intra-analyst segmentation variability and its effects on com-

puted stress fields. Differences were observed when comparing segmentations per-

formed by the four analysts, with the number of nodes in the geometry being differ-

ent. Additionally, the location of high stress areas differs slightly between the 

segmentations. These factors directly affect the prediction of rupture risk occur-

rence and location. Future studies are recommended to incorporate Bland & Alt-

man’s difference of mean methods and plots to obtain a more reliable comparison 

of intra- & inter- user segmentation differences and their effects on computed wall 

stresses. This paper also highlights the importance of the development of edge de-

tection methods which reduce user variability altogether. 
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